搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔金属薄膜阻尼减振微观机理研究

姜文全 杜广煜 巴德纯 杨帆

引用本文:
Citation:

多孔金属薄膜阻尼减振微观机理研究

姜文全, 杜广煜, 巴德纯, 杨帆

Micro-mechanism of damping vibration attenuation on porous metal coating

Jiang Wen-Quan, Du Guang-Yu, Ba De-Chun, Yang Fan
PDF
导出引用
  • 研究了多孔金属薄膜的阻尼性能和微观机理. 采用分子动力学方法及扫描电镜(SEM) 原位观察实验手段对多孔金属薄膜阻尼进行研究, 得出金属薄膜应变滞后于应力周期性变化以及弹性势能周期性衰减的规律, 并通过应变滞后应力的时间差求得损耗因子; 从微观结构上可看出, 在薄膜孔缺陷附近\langle110angle晶向上经历了位错产生、 并且位错呈阶梯状向前发射的变化; 在SEM原位拉伸、卸载实验中观察到有微裂纹的萌生、斜向阶梯扩展、收缩及消失的周期过程. 结果表明: 在周期载荷作用下, 多孔金属薄膜的孔缺陷附近产生的位错可以挣脱开弱钉扎点并限制在强钉扎点上, 由于位错的变化及附近晶界间的相对滑动产生内摩擦, 消耗了系统的部分弹性势能, 引起金属薄膜的阻尼减振效应, 从而揭示了多孔金属涂层阻尼产生的微观机理.
    Based on molecular dynamics method and in-situ scanning electron microscopy (SEM) observations, the damping efficiency of the porous metal coating is discussed in this paper. Molecular dynamics simulation is performed to study the plastic deformations of Cu films with vibration. In the simulation, embedded atom method (EAM) is selected and in the method an interatomic potential function is used. And porous copper coating is carried out for calculating by using velocity-verlet algorithm. The plastic deformation is due to the dislocation nucleation near free surfaces, and the dislocation is shaped into forward emission in the crystal orientation near the defects. At the same time, the change curves of stress and strain are drawn by origin software. Damping factor (η) is calculated by using the time of strain lagging stress. The regulation of elastic potential energy attenuation is obtained by energy calculation. On the other hand, in-situ tensile/compression experiment is conducted by the FEI Quanta 200 SEM with a maximum load capacity of 2 kN at room temperature. A copper layer is deposited on the surface of the polyimide film by the electron beam evaporation deposition method. The thickness of the copper layer is 10 μm and the thickness of polyimide is 175 μm. Using the scanning electron microscope, microstructures of the coating are observed. It could be seen that the coating and the polyimide film are both better in compactness. Using in-situ testing machine at SEM, the samples with and without copper coatings are respectively tested under tensile and unloading. The rate of displacement loading is 2 mm/min, the results of load (F) and displacement (l') are printed every 0.1 s. The loading direction is horizontal. During in-situ tensile/compression test, the straining is stopped several times in order to make the observations and take micrographs. The digital SEM images are directly transferred to a computer via a direct memory access type A/D converter, which can rapidly capture clear images of the 1024×943 pixel frames. The simulations and experimental results indicate that the dislocation near defects get rid of weak pinning points and limit to the strong pinning point, the internal friction is generated due to the change of dislocation and the relative sliding near grain boundary, and the stored elastic potential energy is consumed, which causes the damping effect of the film.
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 51005043)、 中央高校基本科研业务费专项资金(批准号: N130403012, N140301001)和高等学校博士学科点专项科研基金(批准号: 20120042110031)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51005043), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. N130403012, N140301001), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120042110031).
    [1]

    Tian Y, Huang L, Luo M K 2013 Acta Phys. Sin. 62 050502 (in Chinese) [田艳, 黄丽, 罗懋康 2013 62 050502]

    [2]

    Yu S J 2014 Acta Phys. Sin. 63 116801 (in Chinese) [余森江 2014 63 116801]

    [3]

    Zhang L Y, Jin G X, Cao L, Wang Z Y

    [4]

    Ge T S 2000 Foundation of Solid Internal Friction Theory: Grain Boundary Relaxation and Structure (Beijing: Science Press) pp442-526 (in Chinese) [葛庭燧 2000 固体内耗理论基础\pzh 晶界弛豫与晶界结构 (北京: 科学出版社) 第442-526页]

    [5]

    Masti R S, Sainsbury M G 2005 Thin Wall. Struct. 43 1355

    [6]

    Patsias S, Tassini N, Lambfinou K 2006 Mater. Sci. Eng. A 442 504

    [7]

    Yin F, Ohsawa Y, Sato A, Kawahara K 2001 Mater. Trans. 42 385

    [8]

    Dao M, Lu L, Asaro R J, de Hosson J T M, Ma E

    [9]

    Liu S S, Wen Y H, Zhu Z Z 2008 Chin. Phys. B 17 2621

    [10]

    Yu L M, Ma Y, Zhou C G, Xu H B 2005 Int. J. Solids Struct. 42 3045

    [11]

    Choi D H, Nix W D 2006 Acta Mater. 54 679

    [12]

    Zhang L, Lü C, Kiet T, Pei L Q, Zhao X

    [13]

    Muhammad I, Fayyaz H, Muhammad R

    [14]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S

    [15]

    Zhang Q, Hiroyuki T 2011 Acta Phys. Sin. 60 114103 (in Chinese) [张强, 户田裕之 2011 60 114103]

    [16]

    Du G Y, Sun W, Ba D C, Han Q K 2014 CN Patent 103602955A (in Chinese) [杜广煜, 孙伟, 巴德纯, 韩清凯 2014 CN103602955A]

    [17]

    Rozmanov D, Kusalik P G 2010 Phys. Rev. E 81 056706

    [18]

    Guo Q N, Yue X D, Yang S E, Huo Y P 2010 Comput. Mater. Sci. 50 319

    [19]

    Yuan Q, Zhao Y P

    [20]

    Ao B Y, Xia J X, Chen P H, Hu W Y, Wang X L

    [21]

    Fan J H 2008 Multiscale Analysis for Deformation and Failure of Materials (Beijing: Science Press) pp40-132 (in Chinese) [范镜泓 2008 材料变形与破坏的多尺度分析 (北京: 科学出版社) 第40-132页]

  • [1]

    Tian Y, Huang L, Luo M K 2013 Acta Phys. Sin. 62 050502 (in Chinese) [田艳, 黄丽, 罗懋康 2013 62 050502]

    [2]

    Yu S J 2014 Acta Phys. Sin. 63 116801 (in Chinese) [余森江 2014 63 116801]

    [3]

    Zhang L Y, Jin G X, Cao L, Wang Z Y

    [4]

    Ge T S 2000 Foundation of Solid Internal Friction Theory: Grain Boundary Relaxation and Structure (Beijing: Science Press) pp442-526 (in Chinese) [葛庭燧 2000 固体内耗理论基础\pzh 晶界弛豫与晶界结构 (北京: 科学出版社) 第442-526页]

    [5]

    Masti R S, Sainsbury M G 2005 Thin Wall. Struct. 43 1355

    [6]

    Patsias S, Tassini N, Lambfinou K 2006 Mater. Sci. Eng. A 442 504

    [7]

    Yin F, Ohsawa Y, Sato A, Kawahara K 2001 Mater. Trans. 42 385

    [8]

    Dao M, Lu L, Asaro R J, de Hosson J T M, Ma E

    [9]

    Liu S S, Wen Y H, Zhu Z Z 2008 Chin. Phys. B 17 2621

    [10]

    Yu L M, Ma Y, Zhou C G, Xu H B 2005 Int. J. Solids Struct. 42 3045

    [11]

    Choi D H, Nix W D 2006 Acta Mater. 54 679

    [12]

    Zhang L, Lü C, Kiet T, Pei L Q, Zhao X

    [13]

    Muhammad I, Fayyaz H, Muhammad R

    [14]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S

    [15]

    Zhang Q, Hiroyuki T 2011 Acta Phys. Sin. 60 114103 (in Chinese) [张强, 户田裕之 2011 60 114103]

    [16]

    Du G Y, Sun W, Ba D C, Han Q K 2014 CN Patent 103602955A (in Chinese) [杜广煜, 孙伟, 巴德纯, 韩清凯 2014 CN103602955A]

    [17]

    Rozmanov D, Kusalik P G 2010 Phys. Rev. E 81 056706

    [18]

    Guo Q N, Yue X D, Yang S E, Huo Y P 2010 Comput. Mater. Sci. 50 319

    [19]

    Yuan Q, Zhao Y P

    [20]

    Ao B Y, Xia J X, Chen P H, Hu W Y, Wang X L

    [21]

    Fan J H 2008 Multiscale Analysis for Deformation and Failure of Materials (Beijing: Science Press) pp40-132 (in Chinese) [范镜泓 2008 材料变形与破坏的多尺度分析 (北京: 科学出版社) 第40-132页]

  • [1] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟.  , 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] 张硕, 龙连春, 刘静毅, 杨洋. 分子动力学方法研究缺陷对铁单质薄膜磁致伸缩的影响.  , 2021, (): . doi: 10.7498/aps.70.20211177
    [3] 李育川, 郝刚领, 王金, 王伟国, 王新福, 汪聃. 烧结过程中Ni-Al金属间化合物形成的内耗.  , 2021, 70(5): 056102. doi: 10.7498/aps.70.20201422
    [4] 吕笑梅, 黄凤珍, 朱劲松. 铁电材料中的电畴: 形成、结构、动性及相关性能.  , 2020, 69(12): 127704. doi: 10.7498/aps.69.20200312
    [5] 郝刚领, 许巧平, 李先雨, 王伟国. 金属粉末压坯烧结过程的内耗研究.  , 2019, 68(12): 126101. doi: 10.7498/aps.68.20190031
    [6] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟.  , 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [7] 王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良. SiC/C界面辐照性能的分子动力学研究.  , 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [8] 郭巧能, 曹义刚, 孙强, 刘忠侠, 贾瑜, 霍裕平. 温度对超薄铜膜疲劳性能影响的分子动力学模拟.  , 2013, 62(10): 107103. doi: 10.7498/aps.62.107103
    [9] 兰惠清, 徐藏. 掺硅类金刚石薄膜摩擦过程的分子动力学模拟.  , 2012, 61(13): 133101. doi: 10.7498/aps.61.133101
    [10] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟.  , 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [11] 陈敏. 分子动力学方法研究金属Ti中He小团簇的迁移.  , 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [12] 马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦. 纳米多晶金属样本构建的分子动力学模拟研究.  , 2010, 59(7): 4781-4787. doi: 10.7498/aps.59.4781
    [13] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟.  , 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [14] 刘美林, 张宗宁, 李蔚, 赵骞, 祁阳, 张林. MgO(001)表面上沉积MgO薄膜过程的分子动力学模拟.  , 2009, 58(13): 199-S203. doi: 10.7498/aps.58.199
    [15] 周宗荣, 王 宇, 夏源明. γ-TiAl金属间化合物面缺陷能的分子动力学研究.  , 2007, 56(3): 1526-1531. doi: 10.7498/aps.56.1526
    [16] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟.  , 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [17] 周耐根, 周 浪. 外延生长薄膜中失配位错形成条件的分子动力学模拟研究.  , 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
    [18] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟.  , 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [19] 陈军, 经福谦, 张景琳, 陈栋泉. 冲击作用下金属表面微喷射的分子动力学模拟.  , 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟.  , 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  6159
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-23
  • 修回日期:  2015-01-31
  • 刊出日期:  2015-07-05

/

返回文章
返回
Baidu
map