Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of laser-cooled SH anion

Wan Ming-Jie Li Song Jin Cheng-Guo Luo Hua-Feng

Citation:

Theoretical study of laser-cooled SH anion

Wan Ming-Jie, Li Song, Jin Cheng-Guo, Luo Hua-Feng
PDF
HTML
Get Citation
  • The potential energy curves, dipole moments, and transition dipole moments for the ${{\rm{X}}^1}{\Sigma ^ + }$, ${{\rm{a}}^3}\Pi $, and ${{\rm{A}}^1}\Pi $ electronic state of sulfur hydride anion (SH) are calculated by using the multi-reference configuration interaction method plus Davidson corrections (MRCI+Q) with all-electron basis set. The scalar relativistic corrections and core-valence correlations are also considered. In the CASSCF calculations, H(1s) and S(3s3p4s) shells are chosen as active space, and the rest orbitals S(1s2s2p) as closed-shell. In the MRCI+Q calculations, the S(1s2s2p) shells are used for the core-valence correlation. Spectroscopic parameters, Einstein spontaneous emission coefficient, Franck-Condon factors, and spontaneous radiative lifetimes are obtained by using Le Roy’s LEVEL8.0 program. The calculated spectroscopic parameters are in good agreement with available experimental data and theoretical values. Spin-orbit coupling (SOC) effects are evaluated with Breit-Pauli operators at the MRCI+Q level. Transition dipole moments (TDMs) for the ${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{a}}^3}{\Pi _{{0^ + }}}$ and ${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{a}}^3}{\Pi _1}$ transitions are also calculated. The strength for the ${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $ is the strongest in these five transitions, the value of TDM at Re is –1.3636 D. We find that the value of TDM for the ${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $ transition at Re is 0.5269 D. Therefore, this transition must be taken into account to build the scheme of laser-cooled SH anion. Highly diagonally distributed Franck-Condon factor f00 for the ${{\rm{a}}^3}{\Pi _1}(\nu ' = 0) \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $ $ (\nu '' = 0)$ transition is 0.9990 and the value for the ${{\rm{A}}^1}{\Pi _1}(\nu ' = 0) \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + (\nu '' = 0)$ transition is 0.9999. Spontaneous radiative lifetimes of $\tau \left( {{{\rm{a}}^3}{\Pi _1}} \right)= 1.472 \;{\text{μ}}{\rm{s}}$ and $\tau \left( {{{\rm{A}}^1}{\Pi _1}} \right)=0.188 \;{\text{μ}}{\rm{s}}$ are obtained, which can ensure that laser cools SH anion rapidly. To drive the ${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $ and ${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $ transitions, just one laser wavelength is required. The wavelengths are 492.27 nm and 478.57 nm for two transitions, respectively. Notably, the influences of the intervening states ${{\rm{a}}^3}{\Pi _1}$ and ${{\rm{a}}^3}{\Pi _{{0^{\rm{ + }}}}}$ on the ${{\rm{A}}^1}{\Pi _1} \leftrightarrow {X^1}\Sigma _{{0^ + }}^ + $ transition are small enough to implement a laser cooling project. A spin-forbidden transition and a three-electronic-level transition optical scheme of laser-cooled SH anion are constructed, respectively. In addition, the Doppler temperatures and recoil temperatures for the ${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $ and ${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $ transitions of laser-cooled SH anion are also obtained, respectively.
      Corresponding author: Wan Ming-Jie, wanmingjie1983@sina.com
    • Funds: Project supported by the Special Foundation for Theoretical Physics Research Program of China (Grant Nos. 11647075, 11747071) and the Open Research Fund of Computational physics Key Laboratory of Sichuan Province, Yibin University, China (Grant No. JSWL2014KF05).
    [1]

    Shuman E S, Barry J F, DeMille D 2010 Nature 467 820Google Scholar

    [2]

    Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416Google Scholar

    [3]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110Google Scholar

    [4]

    张云光, 张华, 窦戈, 徐建刚 2017 66 233101Google Scholar

    Zhang Y G, Zhang H, Dou G, Xu J G 2017 Acta Phys. Sin. 66 233101Google Scholar

    [5]

    Gao Y, Gao T 2014 Phys. Rev. A 90 052506Google Scholar

    [6]

    Wan M, Shao J, Huang D, Jin C, Yu Y, Wang F 2015 Phys. Chem. Chem. Phys. 17 26731Google Scholar

    [7]

    Wan M, Shao J, Gao Y, Huang D, Yang J, Cao Q, Jin C, Wang F 2015 J. Chem. Phys. 143 024302Google Scholar

    [8]

    Gao Y, Gao T 2015 Phys. Chem. Chem. Phys. 17 10830Google Scholar

    [9]

    李亚超, 孟腾飞, 李传亮等 2017 66 163101Google Scholar

    Li Y C, Meng T F, Li C L, et al. 2017 Acta Phys. Sin. 66 163101Google Scholar

    [10]

    Zhang Q, Yang C, Wang M, Ma X, Liu W 2017 Spectrochim. Acta, Part A 182 130Google Scholar

    [11]

    Zhang Q, Yang C, Wang M, Ma X, Liu W 2017 Spectrochim. Acta, Part A 185 365Google Scholar

    [12]

    Wan M, Huang D, Yu Y, Zhang Y 2017 Phys. Chem. Chem. Phys. 19 27360Google Scholar

    [13]

    Steiner B 1968 J. Chem. Phys. 49 5097Google Scholar

    [14]

    Breyer F, Frey P, Hotop H 1981 Z. Phys. 300 7Google Scholar

    [15]

    Janousek B K, Brauman J I 1981 Phys. Rev. A 23 1673Google Scholar

    [16]

    Cade P 1967 J. Chem. Phys. 47 2390Google Scholar

    [17]

    Rosmus P, Meyer W 1978 J. Chem. Phys. 69 2745Google Scholar

    [18]

    Senekowitsch J, Werner H J, Rosmus P, Reinsch E A, Oneil S V 1985 J. Chem. Phys. 83 4661Google Scholar

    [19]

    Vamhindi B S D R, Nsangou M 2016 Mol. Phys. 114 2204Google Scholar

    [20]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [21]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514Google Scholar

    [22]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61Google Scholar

    [23]

    Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053Google Scholar

    [24]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259Google Scholar

    [25]

    Douglas M, Kroll N M 1974 Ann. Phys. 82 89Google Scholar

    [26]

    Hess B A 1986 Phys. Rev. A 33 3742Google Scholar

    [27]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [28]

    Werner H J, Knowles P J, Lindh R, et al. MOLPRO, version 2010.1, a package of ab initio programs, 2010, see http://www.molpro.net [2018-11-15]

    [29]

    Peterson K A, Dunning Jr T H 2002 J. Chem. Phys. 117 10548Google Scholar

    [30]

    Dunning Jr T H 1989 J. Chem. Phys. 90 1007Google Scholar

    [31]

    Murrell J N, Sorbie K S. 1974 J Chem. Soc., Faraday Trans. 70 1552Google Scholar

    [32]

    Le Roy R J Level 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663

    [33]

    Lykke K R, Murray K K, Lineberger W C 1991 Rhys. Rev. A 43 6104Google Scholar

    [34]

    Hotop H, Lineberger W C 1985 J. Phys. Chem. Ref. Data 14 731Google Scholar

    [35]

    Moore C E 1971 Atomic Energy Levels (Vol. 1) (Washington, DC: National Bureau of Standards Publications) p181

    [36]

    Cohen-Tannoudji C N 1998 Rev. Phys. Mod. 70 707Google Scholar

    [37]

    Kobayashi J, Aikawa K, Oasa K, Inouye S 2014 Phys. Rev. A 89 021401Google Scholar

  • 图 1  SH阴离子的${{\rm{X}}^1}{\Sigma ^ + }$, ${{\rm{a}}^3}\Pi $, ${{\rm{A}}^1}\Pi $, ${1^3}{\Sigma ^ + }$${2^1}{\Sigma ^ + }$态的势能曲线

    Figure 1.  Potential energy curves for the ${{\rm{X}}^1}{\Sigma ^ + }$, ${{\rm{a}}^3}\Pi $, ${{\rm{A}}^1}\Pi $, and ${2^1}{\Sigma ^ + }$ states of SH anion.

    图 2  SH阴离子的$\Omega$态的势能曲线

    Figure 2.  Potential energy curves for the $\Omega$ states of SH anion.

    图 3  SH阴离子的跃迁偶极矩 (a) ${{\rm{A}}^{1}}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $跃迁; (b) ${{\rm{a}}^{3}}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{A}}^1}{\Pi _1} \!\leftrightarrow\!{{\rm{a}}^3}{\Pi _{{0^ + }}}$${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{a}}^3}{\Pi _1}$跃迁

    Figure 3.  Transition dipole moments of SH anion: (a) The ${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $ and ${{\rm{a}}^{3}}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $ transitions; (b) the ${{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{a}}^3}{\Pi _{{0^ + }}}$ and ${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{a}}^3}{\Pi _1}$ transitions.

    图 4  采用$\scriptstyle {{{\rm{a}}^3}{\Pi _1}}\leftrightarrow \scriptstyle {{{\rm{X}}^1}\Sigma _{{0^ + }}^ + }$跃迁进行激光冷却SH阴离子的方案, 实线为所需激光, 虚线为自发辐射的弗兰克-康登因子

    Figure 4.  Proposed laser cooling scheme for the $ \scriptstyle{{{\rm{a}}^3}{\Pi _1}}\leftrightarrow$$\scriptstyle {{{\rm{X}}^1}\Sigma _{{0^ + }}^ + }$ transition (solid line) and spontaneous decay.

    图 5  采用${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $跃迁进行激光冷却SH阴离子的方案, 其中实线为所需激光, 虚线为自发辐射的弗兰克-康登因子

    Figure 5.  Proposed laser cooling scheme for the $ {{\rm{A}}^1}{\Pi _1} \leftrightarrow$$ {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $ transition (solid line) and spontaneous decay.

    表 1  SH-阴离子的$\Lambda\text{-}\rm S$态的光谱常数

    Table 1.  Spectroscopic parameters for the $\Lambda\text{-}\rm S $ states of SH anion.

    电子态Re$\omega_{\rm{e}}$/cm–1$\omega_{\rm{e}}\chi_{\rm{e}}$/cm–1Be/cm–1De/eVTe/cm–1RMS/cm–1
    ${{\rm{X}}^1}{\Sigma ^ + }$本文工作1.34352622.0446.669.55903.879304.4107
    实验值[13]1.34—0.022700—3009.46—0.32
    实验值[14]2648—1109.39—0.3
    理论值[17]1.3482642529.493.9020
    理论值[18]1.3462637529.52
    理论值[19]1.34402682.8639.29.5514.19
    ${{\rm{a}}^3}\Pi $本文工作第一势阱1.34662583.6173.229.51480.959820436.920.0604
    理论值[19]1.37461936.16307.5039.1291.3822082.7
    本文工作第二势阱2.1021778.72133.343.90450.435627816.711.1556
    ${{\rm{A}}^1}\Pi $本文工作第一势阱1.34412626.5961.519.55111.184820852.700.0474
    理论值[19]1.34322554.9744.1869.5611.3322225.2
    本文工作第二势阱2.2430424.8036.8103.42960.121730299.280.3277
    DownLoad: CSV

    表 2  SH阴离子的$\Omega$态的光谱常数

    Table 2.  Spectroscopic parameters for the $\Omega$ states of SH anion.

    $\Omega$ stateRe$\omega_{\rm{e}}$/cm–1$\omega_{\rm{e}}\chi_{\rm{e}}$/cm–1Be/cm–1De/eVTe/cm–1RMS/cm–1
    ${{\rm{X}}^1}\Sigma _{{0^ + }}^ + $1.34352618.5344.589.55893.857504.0232
    ${{\rm{a}}^3}{\Pi _2}$第一势阱1.34662584.1372.089.51510.960720247.580.0257
    第二势阱2.1011779.62136.273.90820.442927639.821.1521
    ${{\rm{a}}^{3}}{\Pi _1}$第一势阱1.34632588.5469.879.51960.966520363.640.0537
    第二势阱2.1005773.93135.453.91050.417327802.871.0389
    ${{\rm{a}}^3}{\Pi _{{0^ - }}}$第一势阱1.34662583.8370.949.51490.958920624.880.0203
    第二势阱2.1036776.84132.773.89900.39827989.311.1617
    ${{\rm{a}}^3}{\Pi _{{0^ + }}}$第一势阱1.34662583.8970.929.51490.959420625.010.0195
    第二势阱2.1012780.04136.693.90790.453627999.081.3153
    ${{\rm{A}}^1}{\Pi _1}$第一势阱1.34442621.7061.529.54641.200620924.710.0392
    第二势阱2.2449422.6937.823.42370.102630306.300.2834
    DownLoad: CSV

    表 3  SH阴离子的辐射速率(单位为s–1)、弗兰克-康登因子和自发辐射寿命(单位为s)

    Table 3.  Emission rates ${A_{\nu ' \nu '' }}$ (unit of s–1), Franck-Condon factors ${f_{\nu ' \nu '' }}$ and spontaneous radiative lifetimes $\tau $ (unit of s) of SH anion.

    TransitionA00A01A02A03A0
    f00f01f02f03$\tau $ = 1/A0
    A10A11A12A13
    f10f11f12f13
    ${\operatorname{a} ^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $6771222184.6925.36762.8984679335
    0.99900.00093.38 × 10–53.46 × 10–61.472 × 10–6
    15577.85610384025.1735.1337
    0.00100.99310.00540.0004
    ${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $531082033.940430.57460.17365310885
    0.99990.00012.18 × 10–61.07 × 10–81.883 × 10–7
    2970.0552627901089.41217.62
    0.00060.99920.00024.13 × 10–5
    ${{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{0^ + }^ + $2229.2498.33840.24560.01262327.84
    0.99890.00113.82 × 10–53.53 × 10–64.295 × 10–4
    102.872852.21284.483.3484
    0.03170.87950.08770.0010
    DownLoad: CSV
    Baidu
  • [1]

    Shuman E S, Barry J F, DeMille D 2010 Nature 467 820Google Scholar

    [2]

    Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416Google Scholar

    [3]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110Google Scholar

    [4]

    张云光, 张华, 窦戈, 徐建刚 2017 66 233101Google Scholar

    Zhang Y G, Zhang H, Dou G, Xu J G 2017 Acta Phys. Sin. 66 233101Google Scholar

    [5]

    Gao Y, Gao T 2014 Phys. Rev. A 90 052506Google Scholar

    [6]

    Wan M, Shao J, Huang D, Jin C, Yu Y, Wang F 2015 Phys. Chem. Chem. Phys. 17 26731Google Scholar

    [7]

    Wan M, Shao J, Gao Y, Huang D, Yang J, Cao Q, Jin C, Wang F 2015 J. Chem. Phys. 143 024302Google Scholar

    [8]

    Gao Y, Gao T 2015 Phys. Chem. Chem. Phys. 17 10830Google Scholar

    [9]

    李亚超, 孟腾飞, 李传亮等 2017 66 163101Google Scholar

    Li Y C, Meng T F, Li C L, et al. 2017 Acta Phys. Sin. 66 163101Google Scholar

    [10]

    Zhang Q, Yang C, Wang M, Ma X, Liu W 2017 Spectrochim. Acta, Part A 182 130Google Scholar

    [11]

    Zhang Q, Yang C, Wang M, Ma X, Liu W 2017 Spectrochim. Acta, Part A 185 365Google Scholar

    [12]

    Wan M, Huang D, Yu Y, Zhang Y 2017 Phys. Chem. Chem. Phys. 19 27360Google Scholar

    [13]

    Steiner B 1968 J. Chem. Phys. 49 5097Google Scholar

    [14]

    Breyer F, Frey P, Hotop H 1981 Z. Phys. 300 7Google Scholar

    [15]

    Janousek B K, Brauman J I 1981 Phys. Rev. A 23 1673Google Scholar

    [16]

    Cade P 1967 J. Chem. Phys. 47 2390Google Scholar

    [17]

    Rosmus P, Meyer W 1978 J. Chem. Phys. 69 2745Google Scholar

    [18]

    Senekowitsch J, Werner H J, Rosmus P, Reinsch E A, Oneil S V 1985 J. Chem. Phys. 83 4661Google Scholar

    [19]

    Vamhindi B S D R, Nsangou M 2016 Mol. Phys. 114 2204Google Scholar

    [20]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [21]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514Google Scholar

    [22]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61Google Scholar

    [23]

    Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053Google Scholar

    [24]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259Google Scholar

    [25]

    Douglas M, Kroll N M 1974 Ann. Phys. 82 89Google Scholar

    [26]

    Hess B A 1986 Phys. Rev. A 33 3742Google Scholar

    [27]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [28]

    Werner H J, Knowles P J, Lindh R, et al. MOLPRO, version 2010.1, a package of ab initio programs, 2010, see http://www.molpro.net [2018-11-15]

    [29]

    Peterson K A, Dunning Jr T H 2002 J. Chem. Phys. 117 10548Google Scholar

    [30]

    Dunning Jr T H 1989 J. Chem. Phys. 90 1007Google Scholar

    [31]

    Murrell J N, Sorbie K S. 1974 J Chem. Soc., Faraday Trans. 70 1552Google Scholar

    [32]

    Le Roy R J Level 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663

    [33]

    Lykke K R, Murray K K, Lineberger W C 1991 Rhys. Rev. A 43 6104Google Scholar

    [34]

    Hotop H, Lineberger W C 1985 J. Phys. Chem. Ref. Data 14 731Google Scholar

    [35]

    Moore C E 1971 Atomic Energy Levels (Vol. 1) (Washington, DC: National Bureau of Standards Publications) p181

    [36]

    Cohen-Tannoudji C N 1998 Rev. Phys. Mod. 70 707Google Scholar

    [37]

    Kobayashi J, Aikawa K, Oasa K, Inouye S 2014 Phys. Rev. A 89 021401Google Scholar

  • [1] Feng Zhuo, Suo Bing-Bing, Han Hui-Xian, Li An-Yang. High-precision electron structure calculation of CaSH molecules and theoretical analysis of its application to laser-cooled target molecules. Acta Physica Sinica, 2024, 73(2): 023301. doi: 10.7498/aps.73.20230742
    [2] Wang Xin-Yu, Wang Yi-Lin, Shi Qian-Han, Wang Qing-Long, Yu Hong-Yang, Jin Yuan-Yuan, Li Song. Theoretical study of potential energy curves and vibrational levels of low-lying electronic states of SbS. Acta Physica Sinica, 2022, 71(2): 023101. doi: 10.7498/aps.71.20211441
    [3] Guo Rui, Tan Han, Yuan Qin-Yue, Zhang Qing, Wan Ming-Jie. Spectroscopic and transition properties of LiCl anion. Acta Physica Sinica, 2022, 71(4): 043101. doi: 10.7498/aps.71.20211688
    [4] Hou Qiu-Yu, Guan Hao-Yi, Huang Yu-Lu, Chen Shi-Lin, Yang Ming, Wan Ming-Jie. Electronic structures and transition properties of AsH+ cation. Acta Physica Sinica, 2022, 71(21): 213101. doi: 10.7498/aps.71.20221104
    [5] Hou Qiu-Yu,  Guan Hao-Yi,  Huang Yu-Lu,  Chen Shi-Lin,  Yang Ming,  Wan Ming-Jie. The electronic structures and transition properties of AsH+ cation. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221104
    [6] Theoretical study of the potential energy curves and vibrational levels of low-lying electronic states of SbS. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211441
    [7] Spectroscopic and transition properties of LiCl- anion. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211688
    [8] Yin Jun-Hao, Yang Tao, Yin Jian-Ping. Theoretical investigation into spectrum of ${{{\bf{A}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Pi}} }_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow}} {{{\bf{X}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Sigma}} }_{{\boldsymbol{1/2}}}$ transition for CaH molecule toward laser cooling. Acta Physica Sinica, 2021, 70(16): 163302. doi: 10.7498/aps.70.20210522
    [9] Wan Ming-Jie, Liu Fu-Ti, Huang Duo-Hui. Spectroscopic and transition properties of SeH anion including spin-orbit coupling. Acta Physica Sinica, 2021, 70(3): 033101. doi: 10.7498/aps.70.20201413
    [10] Hua Ya-Wen, Liu Yi-Liang, Wan Ming-Jie. Theoretical study on electronic structure and transition properties of excited states for SeH+ anion. Acta Physica Sinica, 2020, 69(15): 153101. doi: 10.7498/aps.69.20200278
    [11] Chen Tao, Yan Bo. Laser cooling and trapping of polar molecules. Acta Physica Sinica, 2019, 68(4): 043701. doi: 10.7498/aps.68.20181655
    [12] Wan Ming-Jie, Luo Hua-Feng, Yuan Di, Li Song. Theoretical study of laser cooling of potassium chloride anion. Acta Physica Sinica, 2019, 68(17): 173102. doi: 10.7498/aps.68.20190869
    [13] Luo Hua-Feng, Wan Ming-Jie, Huang Duo-Hui. Potential energy curves and transition properties for the ground and excited states of BH+ cation. Acta Physica Sinica, 2018, 67(4): 043101. doi: 10.7498/aps.67.20172409
    [14] Xing Wei, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lüe. Theoretical study of spectroscopic properties of 5 -S and 10 states and laser cooling for AlH+ cation. Acta Physica Sinica, 2018, 67(19): 193101. doi: 10.7498/aps.67.20180926
    [15] Zhang Yun-Guang, Zhang Hua, Dou Ge, Xu Jian-Gang. Laser cooling of OH molecules in theoretical approach. Acta Physica Sinica, 2017, 66(23): 233101. doi: 10.7498/aps.66.233101
    [16] Liu Hua-Bing, Yuan Li, Li Qiu-Mei, Chen Xiao-Hong, Du Quan, Jin Rong, Chen Xue-Lian, Wang Lin. Theoretical study of the spectra and radiative transition properties of 6Li32S. Acta Physica Sinica, 2016, 65(3): 033101. doi: 10.7498/aps.65.033101
    [17] Sun Yu, Feng Gao-Ping, Cheng Cun-Feng, Tu Le-Yi, Pan Hu, Yang Guo-Min, Hu Shui-Ming. Precision spectroscopy of helium using a laser-cooled atomic beam. Acta Physica Sinica, 2012, 61(17): 170601. doi: 10.7498/aps.61.170601
    [18] Zhang Bao-Wu, Zhang Ping-Ping, Ma Yan, Li Tong-Bao. Simulations of one-dimensional transverse laser cooling of Cr atomic beam with Monte Carlo method. Acta Physica Sinica, 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [19] Zhang Peng-Fei, Xu Xin-Ping, Zhang Hai-Chao, Zhou Shan-Yu, Wang Yu-Zhu. UV light-induced atom desorption for magnetic trap in single vacuum chamber. Acta Physica Sinica, 2007, 56(6): 3205-3211. doi: 10.7498/aps.56.3205
    [20] Xie Min, Ling Lin, Yang Guo-Jian. Velocity-selective coherent population trapping of a nondegenerate Λ three-level atom. Acta Physica Sinica, 2005, 54(8): 3616-3621. doi: 10.7498/aps.54.3616
Metrics
  • Abstract views:  7454
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  16 November 2018
  • Accepted Date:  02 January 2019
  • Available Online:  01 March 2019
  • Published Online:  20 March 2019

/

返回文章
返回
Baidu
map