搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极性分子的激光冷却及囚禁技术

陈涛 颜波

引用本文:
Citation:

极性分子的激光冷却及囚禁技术

陈涛, 颜波

Laser cooling and trapping of polar molecules

Chen Tao, Yan Bo
PDF
HTML
导出引用
  • 分子由于其不同于原子的特殊性质, 在原子、分子和光物理研究中有其独特的地位. 冷分子研究已经开展了二三十年, 取得了很多重大的进展. 但是以斯塔克减速器为代表的传统冷却方案遇到瓶颈, 很难进一步提高分子的相空间密度. 将原子中成熟的激光冷却技术拓展到极性分子中是本领域近年来的重大突破, 使得冷却和囚禁分子的范围得以大大扩展, 分子的相空间密度也得以提高. 本文对国内外激光冷却极性分子的最新成果进行综述, 并以BaF分子为例介绍激光冷却极性分子的相关理论和技术, 包括分子能级结构分析及精密光谱测量, 采用缓冲气体冷却进行态制备和预冷却, 以及通过冷分子束研究激光与BaF分子间的相互作用. 这些为后续开展激光冷却与囚禁实验研究奠定了基础, 也为开展其他新的分子冷却实验提供了参考.
    Different from atoms, molecules have unique properties, and play an important role in the research of atomic, molecular and optical physics. Cold molecules have important applications in science and have been studied for more than 20 years. But traditional methods, such as the Stark decelerator, have hit a bottleneck: it is hard to increase the phase space density of molecules. Extending the direct laser-cooling technique to new molecular species has recently been a hot topic and also a big challenge. In this review paper, on one hand, we make a brief review to recent progresses on the direct laser cooling of polar molecules. On the other hand, a demonstration on the feasibility of laser cooling BaF molecule has been experimentally illustrated, including the analysis on the molecular energy levels, measurements of the high-resolution spectroscopy, efficient pre-cooling and state preparation via buffer-gas cooling and detailed investigations on the molcule-light interactions. All these results not only pave the way for future laser-cooling and -trapping experiments, but also serve as a reference for the laser-cooling explorations on new molecular species.
      通信作者: 颜波, yanbohang@zju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFA0307200)、国家自然科学基金(批准号: 91636104)和浙江省自然科学基金(批准号: LZ18A040001)资助的课题.
      Corresponding author: Yan Bo, yanbohang@zju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0307200), the National Natural Science Foundation of China (Grant No. 91636104), the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ18A040001), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Liu L, Lu D S, Chen W B, Li T, Qu Q Z, Wang B, Li L, Ren W, Dong Z R, Zhao J B, Xia W B, Zhao X, Ji J W, Ye M F, Sun Y G, Yao Y Y, Song D, Liang Z G, Hu S J, Yu D H, Hou X, Shi W, Zang H G, Xiang J F, Peng X K, Wang Y Z 2018 Nat. Commun. 9 2760Google Scholar

    [2]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar

    [3]

    Parker R H, Yu C, Zhong W, Estey B, Muller H 2018 Science 360 191Google Scholar

    [4]

    Moses S A, Covey J P, Miecnikowski M T, Yan B, Gadway B, Ye J, Jin D S 2015 Science 350 659Google Scholar

    [5]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198Google Scholar

    [6]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969Google Scholar

    [7]

    Bradley C C, Sackett C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687Google Scholar

    [8]

    Griesmaier A, Werner J, Hensler S, Stuhler J, Pfau T 2005 Phys. Rev. Lett. 94 160401Google Scholar

    [9]

    Lahaye T, Koch T, Fröhlich B, Fattori M, Metz J, Griesmaier A, Giovanazzi S, Pfau T 2007 Nature 448 672Google Scholar

    [10]

    Lu M, Burdick N Q, Youn S H, Lev B L 2011 Phys. Rev. Lett. 107 190401Google Scholar

    [11]

    Lu M, Burdick N Q, Lev B L 2012 Phys. Rev. Lett. 108 215301Google Scholar

    [12]

    Aikawa K, Frisch A, Mark M, Baier S, Rietzler A, Grimm R, Ferlaino F 2012 Phys. Rev. Lett. 108 210401Google Scholar

    [13]

    Zelevinsky T, Kotochigova S, Ye J 2008 Phys. Rev. Lett. 100 043201Google Scholar

    [14]

    DeMille D, Cahn S B, Murphree D, Rahmlow D A, Kozlov M G 2008 Phys. Rev. Lett. 100 023003Google Scholar

    [15]

    Kotochigova S, Zelevinsky T, Ye J 2009 Phys. Rev. A 79 012504Google Scholar

    [16]

    Chin C, Flambaum V V, Kozlov M G 2009 New J. Phys. 11 055048Google Scholar

    [17]

    Baranov M A, Dalmonte M, Pupillo G, Zoller P 2012 Chem. Rev. 112 5012Google Scholar

    [18]

    Moses S A, Covey J P, Miecnikowski M T, Jin D S, Ye J 2017 Nat. Phys. 13 13

    [19]

    Bohn J L, Rey A M, Ye J 2017 Science 357 1002Google Scholar

    [20]

    Murphy M T, Flambaum V V, Muller S, Henkel C 2008 Science 320 1611Google Scholar

    [21]

    Hudson J J, Sauer B E, Tarbutt M R, Hinds E A 2002 Phys. Rev. Lett. 89 023003Google Scholar

    [22]

    Bickman S R 2007 Ph.D. Dissertation (New Heiven: Yale University)

    [23]

    Baron J, Campbell W C, DeMille D, Doyle J M, Gabrielse G, Gurevich Y V, Hess P W, Hutzler N R, Kirilov E, Kozyryev I, O’Leary B R, Panda C D, Parsons M F, Petrik E S, Spaun B, Vutha A C, West A D 2014 Science 343 269Google Scholar

    [24]

    Cairncross W B, Gresh D N, Grau M, Cossel K C, Roussy T S, Ni Y, Zhou Y, Ye J, Cornell E A 2017 Phys. Rev. Lett. 119 153001Google Scholar

    [25]

    Altuntas E, Ammon J, Cahn S B, DeMille D 2018 Phys. Rev. Lett. 120 142501Google Scholar

    [26]

    Cooper N R 2004 Phys. Rev. Lett. 92 220405Google Scholar

    [27]

    DeMille D 2002 Phys. Rev. Lett. 88 067901Google Scholar

    [28]

    Croft J F E 2012 Ph.D. Dissertation (Durham: Durham University)

    [29]

    Andre A, DeMille D, Doyle J M, Lukin M D, Maxwell S E, Rabl P, Schoelkopf R J, Zoller P 2006 Nat. Phys. 2 636Google Scholar

    [30]

    Micheli A, Brennen G K, Zoller P 2006 Nat. Phys. 2 341Google Scholar

    [31]

    Krems R V 2008 Phys. Chem. Chem. Phys. 10 4079Google Scholar

    [32]

    Carr L D, DeMille D, Krems R V, Ye J 2009 New J. Phys. 11 055049Google Scholar

    [33]

    Ospelkaus S, Ni K K, Wang D, de Miranda M H G, Neyenhuis B, Quéméner G, Julienne P S, Bohn J L, Jin D S, Ye J 2010 Science 327 853Google Scholar

    [34]

    Rui J, Yang H, Liu L, Zhang D C, Liu Y X, Nan J, Chen Y A, Zhao B, Pan J W 2017 Nat. Phys. 13 699Google Scholar

    [35]

    Ye X, Guo M, González-Martínez M L, Quéméner G, Wang D 2018 Sci. Adv. 4 eaaq0083Google Scholar

    [36]

    Ni K K, Ospelkaus S, de Miranda M H G, Pe’er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S, Ye J 2008 Science 322 231Google Scholar

    [37]

    Zirbel J J, Ni K K, Ospelkaus S, D’Incao J P, Wieman C E, Ye J, Jin D S 2008 Phys. Rev. Lett. 100 143201Google Scholar

    [38]

    Molony P K, Gregory P D, Ji Z, Lu B, Köppinger M P, Le Sueur C R, Blackley C L, Hutson J M, Cornish S L 2014 Phys. Rev. Lett. 113 255301Google Scholar

    [39]

    Takekoshi T, Reichsöllner L, Schindewolf A, Hutson J M, Le Sueur C R, Dulieu O, Ferlaino F, Grimm R, Nägerl H C 2014 Phys. Rev. Lett. 113 205301Google Scholar

    [40]

    Park J W, Will S A, Zwierlein M W 2015 Phys. Rev. Lett. 114 205302Google Scholar

    [41]

    Wang F, He X, Li X, Zhu B, Chen J, Wang D 2015 New J. Phys. 17 035003Google Scholar

    [42]

    Yan B, Moses S A, Gadway B, Covey J P, Hazzard K R A, Rey A M, Jin D S, Ye J 2013 Nature 501 521Google Scholar

    [43]

    Marco L D, Valtolina G, Matsuda K, Tobias W G, Covey J P, Ye J 2018 Arxiv:1808.00028v1

    [44]

    Żuchowski P S, Hutson J M 2010 Phys. Rev. A 81 060703

    [45]

    Nemitz N 2008 Ph.D. Dissertation (Heinrich-Heine Universitat Dusseldorf)

    [46]

    Tassy S, Nemitz N, Baumer F, Höhl C, Batär A, Görlitz A 2010 J. Phys. B: At., Mol. Opt. Phys. 43 205309Google Scholar

    [47]

    Vaidya V D, Tiamsuphat J, Rolston S L, Porto J V 2015 Phys. Rev. A 92 043604Google Scholar

    [48]

    Hansen A H, Khramov A, Dowd W H, Jamison A O, Ivanov V V, Gupta S 2011 Phys. Rev. A 84 011606Google Scholar

    [49]

    Hansen A H, Khramov A Y, Dowd W H, Jamison A O, Plotkin-Swing B, Roy R J, Gupta S 2013 Phys. Rev. A 87 013615Google Scholar

    [50]

    Ivanov V V, Khramov A, Hansen A H, Dowd W H, Münchow F, Jamison A O, Gupta S 2011 Phys. Rev. Lett. 106 153201Google Scholar

    [51]

    Hara H, Takasu Y, Yamaoka Y, Doyle J M, Takahashi Y 2011 Phys. Rev. Lett. 106 205304Google Scholar

    [52]

    Khramov A, Hansen A, Dowd W, Roy R J, Makrides C, Petrov A, Kotochigova S, Gupta S 2014 Phys. Rev. Lett. 112 033201Google Scholar

    [53]

    Pasquiou B, Bayerle A, Tzanova S M, Stellmer S, Szczepkowski J, Parigger M, Grimm R, Schreck F 2013 Phys. Rev. A 88 023601Google Scholar

    [54]

    Kemp S L, Butler K L, Freytag R, Hopkins S A, Hinds E A, Tarbutt M R, Cornish S L 2016 Rev. Sci. Instrum. 87 023105Google Scholar

    [55]

    Barbe V, Ciamei A, Pasquiou B, Reichsollner L, Schreck F, zuchowski P S, Hutson J M 2018 Nat. Phys. s41567–018–0169–x

    [56]

    Bochinski J R, Hudson E R, Lewandowski H J, Meijer G, Ye J 2003 Phys. Rev. Lett. 91 243001Google Scholar

    [57]

    Shuman E S, Barry J F, DeMille D 2010 Nature 467 820Google Scholar

    [58]

    Shuman E S, Barry J F, Glenn D R, DeMille D 2009 Phys. Rev. Lett. 103 223001Google Scholar

    [59]

    Tarbutt M R, Bethlem H L, Hudson J J, Ryabov V L, Ryzhov V A, Sauer B E, Meijer G, Hinds E A 2004 Phys. Rev. Lett. 92 173002Google Scholar

    [60]

    Hudson E R, Ticknor C, Sawyer B C, Taatjes C A, Lewandowski H J, Bochinski J R, Bohn J L, Ye J 2006 Phys. Rev. A 73 063404Google Scholar

    [61]

    van de Meerakker S Y T, Bethlem H L, Meijer G 2008 Nat Phys 4 595Google Scholar

    [62]

    Skomorowski W, Pawlowski F, Korona T, Moszynski R, Żuchowski P S, Hutson J M 2011 J. Chem. Phys. 134 114109Google Scholar

    [63]

    Fulton R, Bishop A I, Shneider M N, Barker P F 2006 Nat. Phys. 2 465Google Scholar

    [64]

    Zeppenfeld M, Motsch M, Pinkse P W H, Rempe G 2009 Phys. Rev. A 80 041401Google Scholar

    [65]

    Prehn A, Ibrügger M, Glöckner R, Rempe G, Zeppenfeld M 2016 Phys. Rev. Lett. 116 063005Google Scholar

    [66]

    Di Rosa M D 2004 Euro. Phys. J. D: At. Mol. Opt. Plas. Phys. 31 395

    [67]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [68]

    Barry J F, McCarron D J, Norrgard E B, Steinecker M H, DeMille D 2014 Nature 512 286Google Scholar

    [69]

    Yeo M, Hummon M T, Collopy A L, Yan B, Hemmerling B, Chae E, Doyle J M, Ye J 2015 Phys. Rev. Lett. 114 223003Google Scholar

    [70]

    Truppe S, Williams H J, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E, Tarbutt M R 2017 Nat. Phys. 13 1173Google Scholar

    [71]

    Williams H J, Caldwell L, Fitch N J, Truppe S, Rodewald J, Hinds E A, Sauer B E, Tarbutt M R 2018 Phys. Rev. Lett. 120 163201Google Scholar

    [72]

    Anderegg L, Augenbraun B L, Bao Y, Burchesky S, Cheuk L W, Ketterle W, Doyle J M 2018 Nat. Phys. s41567–018–0191–z

    [73]

    Lim J, Almond J R, Trigatzis M A, Devlin J A, Fitch N J, Sauer B E, Tarbutt M R, Hinds E A 2018 Phys. Rev. Lett. 120 123201Google Scholar

    [74]

    McCarron D J, Steinecker M H, Zhu Y, DeMille D 2018 Phys. Rev. Lett. 121 013202Google Scholar

    [75]

    Collopy A L, Ding S, Wu Y, Finneran I A, Anderegg L, Augenbraun B L, Doyle J M, Ye J 2018 Phys. Rev. Lett. 121 213201Google Scholar

    [76]

    Anderegg L, Augenbraun B L, Chae E, Hemmerling B, Hutzler N R, Ravi A, Collopy A, Ye J, Ketterle W, Doyle J M 2017 Phys. Rev. Lett. 119 103201Google Scholar

    [77]

    Kozyryev I, Baum L, Matsuda K, Augenbraun B L, Anderegg L, Sedlack A P, Doyle J M 2017 Phys. Rev. Lett. 118 173201Google Scholar

    [78]

    Iwata G Z, McNally R L, Zelevinsky T 2017 Phys. Rev. A 96 022509Google Scholar

    [79]

    Xu L, Yin Y, Wei B, Xia Y, Yin J 2016 Phys. Rev. A 93 013408Google Scholar

    [80]

    Hutzler N R, Lu H I, Doyle J M 2012 Chem. Rev. 112 4803Google Scholar

    [81]

    印建平, 夏勇, 邓联忠, 李兴佳 2018 物理 46 376Google Scholar

    Yin J P, Xia Y, Deng L Z, Li X J 2018 Physics 46 376Google Scholar

    [82]

    侯顺永, 尹亚玲, 印建平 2018 物理 46 446Google Scholar

    Hou S Y, Yin Y L, Yin J P, 2018 Physics 46 446Google Scholar

    [83]

    夏勇, 汪海玲, 许亮, 印建平 2018 物理 47 24Google Scholar

    Xia Y, Wang H L, Xu L, Yin J P 2018 Physics 47 24Google Scholar

    [84]

    邓联忠, 夏勇, 侯顺永, 印建平 2018 物理 47 84Google Scholar

    Deng L Z, Xia Y, Hou S Y, Yin J P 2018 Physics 47 84Google Scholar

    [85]

    武寄洲, 马杰, 贾锁堂 2018 物理 47 162Google Scholar

    Wu J Z, Ma J, Jia S T 2018 Physics 47 162Google Scholar

    [86]

    Kozyryev I, Baum L, Matsuda K, Olson P, Hemmerling B, Doyle J M 2015 New J. Phys. 17 045003Google Scholar

    [87]

    Bulleid N E, Skoff S M, Hendricks R J, Sauer B E, Hinds E A, Tarbutt M R 2013 Phys. Chem. Chem. Phys. 15 12299Google Scholar

    [88]

    Skoff S M, Hendricks R J, Sinclair C D J, Hudson J J, Segal D M, Sauer B E, Hinds E A, Tarbutt M R 2011 Phys. Rev. A 83 023418Google Scholar

    [89]

    Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416Google Scholar

    [90]

    Truppe S, Hambach M, Skoff S M, Bulleid N E, Bumby J S, Hendricks R J, Hinds E A, Sauer B E, Tarbutt M R 2018 J. Mod. Opt. 65 648Google Scholar

    [91]

    Bu W, Chen T, Lv G, Yan B 2017 Phys. Rev. A 95 032701Google Scholar

    [92]

    Bu W, Liu M, Xie D, Yan B 2016 Rev. Sci. Instrum. 87 096102Google Scholar

    [93]

    Wang D, Bu W, Xie D, Chen T, Yan B 2018 J. Opt. Soc. Am. B 35 1658Google Scholar

    [94]

    Patterson D, Doyle J M 2007 J. Chem. Phys. 126 154307Google Scholar

    [95]

    Campbell W C, Doyle J M 2009 Cooling, Trap Loading, and Beam Production Using a Cryogenic Helium Buffer Gas (CRC Press, Boca Raton)

    [96]

    Chen T, Bu W, Yan B 2016 Phys. Rev. A 94 063415Google Scholar

    [97]

    Mulliken R S, Christy A 1931 Phys. Rev. 38 87Google Scholar

    [98]

    Chen T, Bu W, Yan B 2017 Phys. Rev. A 96 053401Google Scholar

    [99]

    Truppe S, Williams H J, Fitch N J, Hambach M, Wall T E, Hinds E A, Sauer B E, Tarbutt M R 2017 New J. Phys. 19 022001Google Scholar

    [100]

    Chae E, Anderegg L, Augenbraun B L, Ravi A, Hemmerling B, Hutzler N R, Collopy A L, Ye J, Ketterle W, Doyle J M 2017 New J. Phys. 19 033035Google Scholar

    [101]

    Barry J F, Shuman E S, Norrgard E B, DeMille D 2012 Phys. Rev. Lett. 108 103002Google Scholar

    [102]

    Hemmerling B, et al. 2016 J. Phys. B: At. Mol. Opt. Phys. 49 174001Google Scholar

    [103]

    Tarbutt M R 2015 New J. Phys. 17 015007Google Scholar

    [104]

    McCarron D J, Norrgard E B, Steinecker M H, DeMille D 2015 New J. Phys. 17 035014Google Scholar

    [105]

    Williams H J, Truppe S, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E, Tarbutt M R 2017 New J. Phys. 19 113035Google Scholar

    [106]

    Tarbutt M R, Steimle T C 2015 Phys. Rev. A 92 053401Google Scholar

    [107]

    Norrgard E B, McCarron D J, Steinecker M H, Tarbutt M R, DeMille D 2016 Phys. Rev. Lett. 116 063004Google Scholar

    [108]

    Lim J, Frye M D, Hutson J M, Tarbutt M R 2015 Phys. Rev. A 92 053419Google Scholar

    [109]

    Morita M, Kosicki M B, Zuchowski P S, Tscherbul T V 2018 Phys. Rev. A 98 042702Google Scholar

  • 图 1  激光消融示意图及实验数据[91] (a)激光消融产生BaF分子示意图; (b)分子吸收信号, 消融激光在t = 0 ms时打开; (c)对吸收信号做归一化处理和拟合; (d)吸收信号与消融激光输出功率的关系; (e)当消融靶材上固定某一位置处, 消融激光轰击次数越多, 分子吸收信号越差. 消融脉冲频率为2 Hz, He气速流为5 sccm

    Fig. 1.  Experimental scheme and laser ablation data[91]. (a) Scheme for the production of BaF molecule via laser ablation; (b) absorption signal; (c) normalizaiton and fit of the absorption signal; (d) the generated molecular number versus the output power of the ablation laser; (e) the dependence of the molecular number on the ablating times when successively ablating a position of the target. The repetition rate of the laser pulse is 2 Hz and the flow rate of the He gas is 5 sccm.

    图 2  分子在不同能级的布居分布[91] (a)理论上根据玻尔兹曼分布计算不同温度下各个转动态上分子布居数的比例; (b)转动态温度的测量与拟合. 这里各个转动态的布居数均以测量的$ N = 0 $态的布居数进行归一化; (c) 4 K和300 K温度下振动态布居数的分布; (d)实验测量的对$ |X,v = 0\rangle\to|A,v^\prime = 0\rangle $(蓝色)和$ |X,v = 1\rangle\to|A,v^\prime = 0\rangle $(红色)跃迁的吸收信号

    Fig. 2.  Molecular distribution at different states[91]. (a) Theoretic calculation of the rotational distribution for different temperatures; (b) experimental data for different rotational populations. All data are normalized with N = 0 population; (c) theoretic calculation of the vibrational distribution; (d) experimental absorption signal for v = 0 and v = 1 molecules from laser ablation.

    图 3  BaF能级示意图和暗态消除方案[98] (a)振动态能级的闭合方案, 增加896 nm和898 nm两个再泵浦激光; (b)转动态能级的闭合及超精细能级分裂示意图; (c)利用EOM调制产生的4个频率边带, 图中是调制后的激光用法珀腔测量的信号; (d)引入边带调制后荧光信号的增强; (e)进行偏振调制后荧光信号的增强; (f)增加 v = 1再泵浦光后荧光信号的增强

    Fig. 3.  The energy levels of BaF and dark state mixing[98].(a) Scheme for closing the vibrational levels; (b) scheme for closing the rotational and hyperfine dark states; (c) sideband modulation via an EOM to generate the four frequency bands to cover the four hyperfine sublevels; (d) LIF enhancement via introducing the sideband modulation; (e) LIF enhancement by introducing the polarization modulation; (f) LIF enhancement when adding the v = 1 repump laser.

    图 4  分子束偏转[98]. CCD在x-z平面成像 (a)和(b)分别对应在相互作用区域有偏转光和没有偏转光时分子束的形状, (c)中给出沿$ \hat{x} $方向分别对(a)和(b)做积分后得到信号. 黑色和红色实线分别为两个信号的高斯拟合. (d)对(c)中的信号分别做归一化, 以清晰地展示偏转效果. (e)偏转距离与偏转光束数量之间的关系, 相应地, 可以推出散射光子数与相互作用时间间的关系. 红色实线为对测量结果的线性拟合. 黑色虚线为根据4+25能级速率方程模型计算得到的散射光子数与相互作用时间的关系

    Fig. 4.  Deflection of the BaF molecular beam with the quasi cycling transitions[98]. Images are given on the x-z plane of the (a) Deflected and (b) unperturbed molecular beams, respectively. The x direction reflects the width of the probe laser beam, while the z direction gives the transverse profile of the molecular beam. (c) integrated signal of the images in (a) and (b) along the x axis. The black and red lines are Gaussian fits to the unperturbed (light gray) and deflected (light orange) signal, which gives the revival rate of 80%. (d) normalized plot of the signals in (c) to clearly show the deflection effect. (e)deflection distance as a function of the number of the deflection beam, yielding the dependence of the scattering photon number on the interaction time. The red solid line is a linear fit to the measured data, illustrating that the photon scattered linearly increases with the interaction time. The black dashed line is the numerical prediction of the scattering from the 4+25 MLRE model with the switching scheme.

    Baidu
  • [1]

    Liu L, Lu D S, Chen W B, Li T, Qu Q Z, Wang B, Li L, Ren W, Dong Z R, Zhao J B, Xia W B, Zhao X, Ji J W, Ye M F, Sun Y G, Yao Y Y, Song D, Liang Z G, Hu S J, Yu D H, Hou X, Shi W, Zang H G, Xiang J F, Peng X K, Wang Y Z 2018 Nat. Commun. 9 2760Google Scholar

    [2]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar

    [3]

    Parker R H, Yu C, Zhong W, Estey B, Muller H 2018 Science 360 191Google Scholar

    [4]

    Moses S A, Covey J P, Miecnikowski M T, Yan B, Gadway B, Ye J, Jin D S 2015 Science 350 659Google Scholar

    [5]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198Google Scholar

    [6]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969Google Scholar

    [7]

    Bradley C C, Sackett C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687Google Scholar

    [8]

    Griesmaier A, Werner J, Hensler S, Stuhler J, Pfau T 2005 Phys. Rev. Lett. 94 160401Google Scholar

    [9]

    Lahaye T, Koch T, Fröhlich B, Fattori M, Metz J, Griesmaier A, Giovanazzi S, Pfau T 2007 Nature 448 672Google Scholar

    [10]

    Lu M, Burdick N Q, Youn S H, Lev B L 2011 Phys. Rev. Lett. 107 190401Google Scholar

    [11]

    Lu M, Burdick N Q, Lev B L 2012 Phys. Rev. Lett. 108 215301Google Scholar

    [12]

    Aikawa K, Frisch A, Mark M, Baier S, Rietzler A, Grimm R, Ferlaino F 2012 Phys. Rev. Lett. 108 210401Google Scholar

    [13]

    Zelevinsky T, Kotochigova S, Ye J 2008 Phys. Rev. Lett. 100 043201Google Scholar

    [14]

    DeMille D, Cahn S B, Murphree D, Rahmlow D A, Kozlov M G 2008 Phys. Rev. Lett. 100 023003Google Scholar

    [15]

    Kotochigova S, Zelevinsky T, Ye J 2009 Phys. Rev. A 79 012504Google Scholar

    [16]

    Chin C, Flambaum V V, Kozlov M G 2009 New J. Phys. 11 055048Google Scholar

    [17]

    Baranov M A, Dalmonte M, Pupillo G, Zoller P 2012 Chem. Rev. 112 5012Google Scholar

    [18]

    Moses S A, Covey J P, Miecnikowski M T, Jin D S, Ye J 2017 Nat. Phys. 13 13

    [19]

    Bohn J L, Rey A M, Ye J 2017 Science 357 1002Google Scholar

    [20]

    Murphy M T, Flambaum V V, Muller S, Henkel C 2008 Science 320 1611Google Scholar

    [21]

    Hudson J J, Sauer B E, Tarbutt M R, Hinds E A 2002 Phys. Rev. Lett. 89 023003Google Scholar

    [22]

    Bickman S R 2007 Ph.D. Dissertation (New Heiven: Yale University)

    [23]

    Baron J, Campbell W C, DeMille D, Doyle J M, Gabrielse G, Gurevich Y V, Hess P W, Hutzler N R, Kirilov E, Kozyryev I, O’Leary B R, Panda C D, Parsons M F, Petrik E S, Spaun B, Vutha A C, West A D 2014 Science 343 269Google Scholar

    [24]

    Cairncross W B, Gresh D N, Grau M, Cossel K C, Roussy T S, Ni Y, Zhou Y, Ye J, Cornell E A 2017 Phys. Rev. Lett. 119 153001Google Scholar

    [25]

    Altuntas E, Ammon J, Cahn S B, DeMille D 2018 Phys. Rev. Lett. 120 142501Google Scholar

    [26]

    Cooper N R 2004 Phys. Rev. Lett. 92 220405Google Scholar

    [27]

    DeMille D 2002 Phys. Rev. Lett. 88 067901Google Scholar

    [28]

    Croft J F E 2012 Ph.D. Dissertation (Durham: Durham University)

    [29]

    Andre A, DeMille D, Doyle J M, Lukin M D, Maxwell S E, Rabl P, Schoelkopf R J, Zoller P 2006 Nat. Phys. 2 636Google Scholar

    [30]

    Micheli A, Brennen G K, Zoller P 2006 Nat. Phys. 2 341Google Scholar

    [31]

    Krems R V 2008 Phys. Chem. Chem. Phys. 10 4079Google Scholar

    [32]

    Carr L D, DeMille D, Krems R V, Ye J 2009 New J. Phys. 11 055049Google Scholar

    [33]

    Ospelkaus S, Ni K K, Wang D, de Miranda M H G, Neyenhuis B, Quéméner G, Julienne P S, Bohn J L, Jin D S, Ye J 2010 Science 327 853Google Scholar

    [34]

    Rui J, Yang H, Liu L, Zhang D C, Liu Y X, Nan J, Chen Y A, Zhao B, Pan J W 2017 Nat. Phys. 13 699Google Scholar

    [35]

    Ye X, Guo M, González-Martínez M L, Quéméner G, Wang D 2018 Sci. Adv. 4 eaaq0083Google Scholar

    [36]

    Ni K K, Ospelkaus S, de Miranda M H G, Pe’er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S, Ye J 2008 Science 322 231Google Scholar

    [37]

    Zirbel J J, Ni K K, Ospelkaus S, D’Incao J P, Wieman C E, Ye J, Jin D S 2008 Phys. Rev. Lett. 100 143201Google Scholar

    [38]

    Molony P K, Gregory P D, Ji Z, Lu B, Köppinger M P, Le Sueur C R, Blackley C L, Hutson J M, Cornish S L 2014 Phys. Rev. Lett. 113 255301Google Scholar

    [39]

    Takekoshi T, Reichsöllner L, Schindewolf A, Hutson J M, Le Sueur C R, Dulieu O, Ferlaino F, Grimm R, Nägerl H C 2014 Phys. Rev. Lett. 113 205301Google Scholar

    [40]

    Park J W, Will S A, Zwierlein M W 2015 Phys. Rev. Lett. 114 205302Google Scholar

    [41]

    Wang F, He X, Li X, Zhu B, Chen J, Wang D 2015 New J. Phys. 17 035003Google Scholar

    [42]

    Yan B, Moses S A, Gadway B, Covey J P, Hazzard K R A, Rey A M, Jin D S, Ye J 2013 Nature 501 521Google Scholar

    [43]

    Marco L D, Valtolina G, Matsuda K, Tobias W G, Covey J P, Ye J 2018 Arxiv:1808.00028v1

    [44]

    Żuchowski P S, Hutson J M 2010 Phys. Rev. A 81 060703

    [45]

    Nemitz N 2008 Ph.D. Dissertation (Heinrich-Heine Universitat Dusseldorf)

    [46]

    Tassy S, Nemitz N, Baumer F, Höhl C, Batär A, Görlitz A 2010 J. Phys. B: At., Mol. Opt. Phys. 43 205309Google Scholar

    [47]

    Vaidya V D, Tiamsuphat J, Rolston S L, Porto J V 2015 Phys. Rev. A 92 043604Google Scholar

    [48]

    Hansen A H, Khramov A, Dowd W H, Jamison A O, Ivanov V V, Gupta S 2011 Phys. Rev. A 84 011606Google Scholar

    [49]

    Hansen A H, Khramov A Y, Dowd W H, Jamison A O, Plotkin-Swing B, Roy R J, Gupta S 2013 Phys. Rev. A 87 013615Google Scholar

    [50]

    Ivanov V V, Khramov A, Hansen A H, Dowd W H, Münchow F, Jamison A O, Gupta S 2011 Phys. Rev. Lett. 106 153201Google Scholar

    [51]

    Hara H, Takasu Y, Yamaoka Y, Doyle J M, Takahashi Y 2011 Phys. Rev. Lett. 106 205304Google Scholar

    [52]

    Khramov A, Hansen A, Dowd W, Roy R J, Makrides C, Petrov A, Kotochigova S, Gupta S 2014 Phys. Rev. Lett. 112 033201Google Scholar

    [53]

    Pasquiou B, Bayerle A, Tzanova S M, Stellmer S, Szczepkowski J, Parigger M, Grimm R, Schreck F 2013 Phys. Rev. A 88 023601Google Scholar

    [54]

    Kemp S L, Butler K L, Freytag R, Hopkins S A, Hinds E A, Tarbutt M R, Cornish S L 2016 Rev. Sci. Instrum. 87 023105Google Scholar

    [55]

    Barbe V, Ciamei A, Pasquiou B, Reichsollner L, Schreck F, zuchowski P S, Hutson J M 2018 Nat. Phys. s41567–018–0169–x

    [56]

    Bochinski J R, Hudson E R, Lewandowski H J, Meijer G, Ye J 2003 Phys. Rev. Lett. 91 243001Google Scholar

    [57]

    Shuman E S, Barry J F, DeMille D 2010 Nature 467 820Google Scholar

    [58]

    Shuman E S, Barry J F, Glenn D R, DeMille D 2009 Phys. Rev. Lett. 103 223001Google Scholar

    [59]

    Tarbutt M R, Bethlem H L, Hudson J J, Ryabov V L, Ryzhov V A, Sauer B E, Meijer G, Hinds E A 2004 Phys. Rev. Lett. 92 173002Google Scholar

    [60]

    Hudson E R, Ticknor C, Sawyer B C, Taatjes C A, Lewandowski H J, Bochinski J R, Bohn J L, Ye J 2006 Phys. Rev. A 73 063404Google Scholar

    [61]

    van de Meerakker S Y T, Bethlem H L, Meijer G 2008 Nat Phys 4 595Google Scholar

    [62]

    Skomorowski W, Pawlowski F, Korona T, Moszynski R, Żuchowski P S, Hutson J M 2011 J. Chem. Phys. 134 114109Google Scholar

    [63]

    Fulton R, Bishop A I, Shneider M N, Barker P F 2006 Nat. Phys. 2 465Google Scholar

    [64]

    Zeppenfeld M, Motsch M, Pinkse P W H, Rempe G 2009 Phys. Rev. A 80 041401Google Scholar

    [65]

    Prehn A, Ibrügger M, Glöckner R, Rempe G, Zeppenfeld M 2016 Phys. Rev. Lett. 116 063005Google Scholar

    [66]

    Di Rosa M D 2004 Euro. Phys. J. D: At. Mol. Opt. Plas. Phys. 31 395

    [67]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [68]

    Barry J F, McCarron D J, Norrgard E B, Steinecker M H, DeMille D 2014 Nature 512 286Google Scholar

    [69]

    Yeo M, Hummon M T, Collopy A L, Yan B, Hemmerling B, Chae E, Doyle J M, Ye J 2015 Phys. Rev. Lett. 114 223003Google Scholar

    [70]

    Truppe S, Williams H J, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E, Tarbutt M R 2017 Nat. Phys. 13 1173Google Scholar

    [71]

    Williams H J, Caldwell L, Fitch N J, Truppe S, Rodewald J, Hinds E A, Sauer B E, Tarbutt M R 2018 Phys. Rev. Lett. 120 163201Google Scholar

    [72]

    Anderegg L, Augenbraun B L, Bao Y, Burchesky S, Cheuk L W, Ketterle W, Doyle J M 2018 Nat. Phys. s41567–018–0191–z

    [73]

    Lim J, Almond J R, Trigatzis M A, Devlin J A, Fitch N J, Sauer B E, Tarbutt M R, Hinds E A 2018 Phys. Rev. Lett. 120 123201Google Scholar

    [74]

    McCarron D J, Steinecker M H, Zhu Y, DeMille D 2018 Phys. Rev. Lett. 121 013202Google Scholar

    [75]

    Collopy A L, Ding S, Wu Y, Finneran I A, Anderegg L, Augenbraun B L, Doyle J M, Ye J 2018 Phys. Rev. Lett. 121 213201Google Scholar

    [76]

    Anderegg L, Augenbraun B L, Chae E, Hemmerling B, Hutzler N R, Ravi A, Collopy A, Ye J, Ketterle W, Doyle J M 2017 Phys. Rev. Lett. 119 103201Google Scholar

    [77]

    Kozyryev I, Baum L, Matsuda K, Augenbraun B L, Anderegg L, Sedlack A P, Doyle J M 2017 Phys. Rev. Lett. 118 173201Google Scholar

    [78]

    Iwata G Z, McNally R L, Zelevinsky T 2017 Phys. Rev. A 96 022509Google Scholar

    [79]

    Xu L, Yin Y, Wei B, Xia Y, Yin J 2016 Phys. Rev. A 93 013408Google Scholar

    [80]

    Hutzler N R, Lu H I, Doyle J M 2012 Chem. Rev. 112 4803Google Scholar

    [81]

    印建平, 夏勇, 邓联忠, 李兴佳 2018 物理 46 376Google Scholar

    Yin J P, Xia Y, Deng L Z, Li X J 2018 Physics 46 376Google Scholar

    [82]

    侯顺永, 尹亚玲, 印建平 2018 物理 46 446Google Scholar

    Hou S Y, Yin Y L, Yin J P, 2018 Physics 46 446Google Scholar

    [83]

    夏勇, 汪海玲, 许亮, 印建平 2018 物理 47 24Google Scholar

    Xia Y, Wang H L, Xu L, Yin J P 2018 Physics 47 24Google Scholar

    [84]

    邓联忠, 夏勇, 侯顺永, 印建平 2018 物理 47 84Google Scholar

    Deng L Z, Xia Y, Hou S Y, Yin J P 2018 Physics 47 84Google Scholar

    [85]

    武寄洲, 马杰, 贾锁堂 2018 物理 47 162Google Scholar

    Wu J Z, Ma J, Jia S T 2018 Physics 47 162Google Scholar

    [86]

    Kozyryev I, Baum L, Matsuda K, Olson P, Hemmerling B, Doyle J M 2015 New J. Phys. 17 045003Google Scholar

    [87]

    Bulleid N E, Skoff S M, Hendricks R J, Sauer B E, Hinds E A, Tarbutt M R 2013 Phys. Chem. Chem. Phys. 15 12299Google Scholar

    [88]

    Skoff S M, Hendricks R J, Sinclair C D J, Hudson J J, Segal D M, Sauer B E, Hinds E A, Tarbutt M R 2011 Phys. Rev. A 83 023418Google Scholar

    [89]

    Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416Google Scholar

    [90]

    Truppe S, Hambach M, Skoff S M, Bulleid N E, Bumby J S, Hendricks R J, Hinds E A, Sauer B E, Tarbutt M R 2018 J. Mod. Opt. 65 648Google Scholar

    [91]

    Bu W, Chen T, Lv G, Yan B 2017 Phys. Rev. A 95 032701Google Scholar

    [92]

    Bu W, Liu M, Xie D, Yan B 2016 Rev. Sci. Instrum. 87 096102Google Scholar

    [93]

    Wang D, Bu W, Xie D, Chen T, Yan B 2018 J. Opt. Soc. Am. B 35 1658Google Scholar

    [94]

    Patterson D, Doyle J M 2007 J. Chem. Phys. 126 154307Google Scholar

    [95]

    Campbell W C, Doyle J M 2009 Cooling, Trap Loading, and Beam Production Using a Cryogenic Helium Buffer Gas (CRC Press, Boca Raton)

    [96]

    Chen T, Bu W, Yan B 2016 Phys. Rev. A 94 063415Google Scholar

    [97]

    Mulliken R S, Christy A 1931 Phys. Rev. 38 87Google Scholar

    [98]

    Chen T, Bu W, Yan B 2017 Phys. Rev. A 96 053401Google Scholar

    [99]

    Truppe S, Williams H J, Fitch N J, Hambach M, Wall T E, Hinds E A, Sauer B E, Tarbutt M R 2017 New J. Phys. 19 022001Google Scholar

    [100]

    Chae E, Anderegg L, Augenbraun B L, Ravi A, Hemmerling B, Hutzler N R, Collopy A L, Ye J, Ketterle W, Doyle J M 2017 New J. Phys. 19 033035Google Scholar

    [101]

    Barry J F, Shuman E S, Norrgard E B, DeMille D 2012 Phys. Rev. Lett. 108 103002Google Scholar

    [102]

    Hemmerling B, et al. 2016 J. Phys. B: At. Mol. Opt. Phys. 49 174001Google Scholar

    [103]

    Tarbutt M R 2015 New J. Phys. 17 015007Google Scholar

    [104]

    McCarron D J, Norrgard E B, Steinecker M H, DeMille D 2015 New J. Phys. 17 035014Google Scholar

    [105]

    Williams H J, Truppe S, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E, Tarbutt M R 2017 New J. Phys. 19 113035Google Scholar

    [106]

    Tarbutt M R, Steimle T C 2015 Phys. Rev. A 92 053401Google Scholar

    [107]

    Norrgard E B, McCarron D J, Steinecker M H, Tarbutt M R, DeMille D 2016 Phys. Rev. Lett. 116 063004Google Scholar

    [108]

    Lim J, Frye M D, Hutson J M, Tarbutt M R 2015 Phys. Rev. A 92 053419Google Scholar

    [109]

    Morita M, Kosicki M B, Zuchowski P S, Tscherbul T V 2018 Phys. Rev. A 98 042702Google Scholar

  • [1] 余泽鑫, 刘琪鑫, 孙剑芳, 徐震. 基于二维磁光阱的增强型199Hg冷原子团制备.  , 2024, 73(1): 013701. doi: 10.7498/aps.73.20231243
    [2] 朱宇豪, 李瑞. 基于组态相互作用方法对AuB分子低激发态电子结构和光学跃迁性质的研究.  , 2024, 73(5): 053101. doi: 10.7498/aps.73.20231347
    [3] 冯卓, 索兵兵, 韩慧仙, 李安阳. CaSH分子高精度电子结构计算及用于激光制冷目标分子的理论分析.  , 2024, 73(2): 023301. doi: 10.7498/aps.73.20230742
    [4] 王月洋, 尹俊豪, 严康, 林钦宁, 庞仁君, 王泽森, 杨涛, 印建平. 基于多能级速率方程的CaH分子三维磁光囚禁模型.  , 2022, 71(16): 163701. doi: 10.7498/aps.71.20220304
    [5] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl-阴离子的光谱性质和跃迁性质.  , 2021, (): . doi: 10.7498/aps.70.20211688
    [6] 尹俊豪, 杨涛, 印建平. 基于${{\bf{A}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Pi}} }}_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow }}{{\bf{X}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Sigma }}}}_{{\boldsymbol{1/2}}}$跃迁的CaH分子激光冷却光谱理论研究.  , 2021, 70(16): 163302. doi: 10.7498/aps.70.20210522
    [7] 李子亮, 师振莲, 王鹏军. 采用永磁铁的钠原子二维磁光阱的设计和研究.  , 2020, 69(12): 126701. doi: 10.7498/aps.69.20200266
    [8] 万明杰, 李松, 金成国, 罗华锋. 激光冷却SH阴离子的理论研究.  , 2019, 68(6): 063103. doi: 10.7498/aps.68.20182039
    [9] 万明杰, 罗华锋, 袁娣, 李松. 激光冷却KCl阴离子的理论研究.  , 2019, 68(17): 173102. doi: 10.7498/aps.68.20190869
    [10] 邢伟, 孙金锋, 施德恒, 朱遵略. AlH+离子5个-S态和10个态的光谱性质以及激光冷却的理论研究.  , 2018, 67(19): 193101. doi: 10.7498/aps.67.20180926
    [11] 许雪艳, 侯顺永, 印建平. 一种可控的Ioffe型冷分子表面微电阱.  , 2018, 67(11): 113701. doi: 10.7498/aps.67.20180206
    [12] 李晓云, 孙博文, 许正倩, 陈静, 尹亚玲, 印建平. 基于调制光晶格的中性分子束光学Stark减速与囚禁的理论研究.  , 2018, 67(20): 203702. doi: 10.7498/aps.67.20181348
    [13] 张云光, 张华, 窦戈, 徐建刚. 激光冷却OH分子的理论研究.  , 2017, 66(23): 233101. doi: 10.7498/aps.66.233101
    [14] 苟维, 刘亢亢, 付小虎, 赵儒臣, 孙剑芳, 徐震. 中性汞原子磁光阱装载率的优化.  , 2016, 65(13): 130201. doi: 10.7498/aps.65.130201
    [15] 刘建平, 侯顺永, 魏斌, 印建平. 亚声速NH3分子束静电Stark减速的理论研究.  , 2015, 64(17): 173701. doi: 10.7498/aps.64.173701
    [16] 许忻平, 张海潮, 王育竹. 一种实现冷原子束聚集的微磁透镜新方案.  , 2012, 61(22): 223701. doi: 10.7498/aps.61.223701
    [17] 孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明. 利用激光冷却原子束测量氦原子精密光谱.  , 2012, 61(17): 170601. doi: 10.7498/aps.61.170601
    [18] 张宝武, 张萍萍, 马艳, 李同保. 铬原子束横向一维激光冷却的蒙特卡罗方法仿真.  , 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [19] 张鹏飞, 许忻平, 张海潮, 周善钰, 王育竹. 紫外光诱导原子脱附技术在单腔磁阱装载中的应用.  , 2007, 56(6): 3205-3211. doi: 10.7498/aps.56.3205
    [20] 谢 旻, 凌 琳, 杨国建. 非简并Λ型三能级原子的速度选择相干布居俘获.  , 2005, 54(8): 3616-3621. doi: 10.7498/aps.54.3616
计量
  • 文章访问数:  10598
  • PDF下载量:  237
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-05
  • 修回日期:  2019-01-07
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-20

/

返回文章
返回
Baidu
map