搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BH+离子基态及激发态的势能曲线和跃迁性质的研究

罗华锋 万明杰 黄多辉

引用本文:
Citation:

BH+离子基态及激发态的势能曲线和跃迁性质的研究

罗华锋, 万明杰, 黄多辉

Potential energy curves and transition properties for the ground and excited states of BH+ cation

Luo Hua-Feng, Wan Ming-Jie, Huang Duo-Hui
PDF
导出引用
  • 利用高精度的多组态相互作用及Davidson修正方法(MRCI+Q),采用ACV5Z-DK全电子基组计算了BH+离子的前4个离解通道B+(1Sg)+H(2Sg),B+(3Pu)+H(2Sg),B(2Pu)+H+(1Sg)和B+(1Pu)+H(2Sg)的9个S态的势能曲线.X2+,A2和B2+态的光谱常数和已有实验值符合得很好,其中b4+,32+,32和42+态的光谱常数为首次报道,32和42+态具有双势阱结构.预测了A2和B2+态的辐射寿命:(A2)=239.2 ns和(B2+)=431.2 ns.最后在考虑自旋轨道耦合效应下讨论了B2+与A2态的势能曲线的相交对激光冷却BH+离子的影响.
    BH+ cation is one of the candidates for laser cooling. The potential energy curves (PECs) for nine electronic states (X2+, A2, B2+, a4, b4+, 32+, 22, 32, 42+) relating to the B+(1Sg)+H(2Sg), B+(3Pu)+H(2Sg), B(2Pu)+H+(1Sg), and B+(1Pu)+H(2Sg) dissociation channels of BH+ cation are obtained using highly accurate multi-reference configuration interaction (MRCI) plus Davidson correction. All-electron basis sets AV5Z-DK for H and ACV5Z-DK for B are used in PEC calculations for the -i-S states of BH+ cation, respectively. In complete active space self-consistent field (CASSCF) calculation, H(1s2s2p3s3p) and B(2s2p) are chosen as active orbitals, B(1s) is the closed shell; in the MRCI calculation, the core-valence (CV) correction is considered, i.e., B(1s) shell is used for CV correlation. Spin-orbit coupling effects are considered with Breit-Pauli operators. Spectroscopic constants are fitted using the Murrell-Sorbie function. Spectroscopic constants for the X2+, A2, and B2+ states are in excellent agreement with the available experimental data; spectroscopic constants for the b4+, 32+, 32, and 42+ states are reported. Two potential wells for the 32 and 42+ states are found. The maximum fitting error of all electronic states is only 3.407 cm-1. In addition, PECs for the A2 and B2+ states are crossed at about 2.7 . Then, the transition dipole moments (TDMs) for the A2 X2+, B2+X2+, 32+X2+, B2+ A2, 32 X2+ and b4+ a4 transitions are also obtained. The strength for the B2+ A2 transition is very weak. Based on the accurate PECs and TDMs, the Franck-Condon factors and spontaneous radiative lifetimes are calculated. A strongly diagonal Franck-Condon factor (f00) for the A2X2+ transition is obtained, which equals 0.9414. Spontaneous radiative lifetime for the A2 and B2+ states is also predicted. i.e., (A2)=239.2 ns and (B2+)=431.2 ns. When SOC effect is considered, the A21/2 and B21/2+ states avoid crossing in the Franck-Condon region (R is about 2.7 ). Calculated f00 for the A21/2 X21/2+ transition is 0.9430; spontaneous radiative lifetime for the A21/2 is 239.0 ns. Our calculated results indicate that the influence for laser cooling BH+ cation via the crossing between B2+ and A2 states can be ignored.
      通信作者: 黄多辉, hdhzhy912@163.com
    • 基金项目: 国家自然科学基金理论物理专项(批准号:11647075)资助的课题.
      Corresponding author: Huang Duo-Hui, hdhzhy912@163.com
    • Funds: Project supported by the Special Foundation for Theoretical Physics Research of the National Natural Science Foundation of China (Grant No. 11647075).
    [1]

    Nguyen J H V, Viteri C R, Hohenstein E G, Scherrill C D, Brown K R, Odom B 2011 New J. Phys. 13 063023

    [2]

    Li Y C, Meng T F, Li C L, Qiu X B, He X H, Yang W, Guo M J, Lai Y Z, Wei J L, Zhao Y T 2017 Acta Phys. Sin. 66 163101 (in Chinese)[李亚超, 孟腾飞, 李传亮, 邱选兵, 和小虎, 杨雯, 郭苗军, 赖云忠, 魏计林, 赵延霆 2017 66 163101]

    [3]

    Kusunoki I 1984 Chem. Phys. Lett. 105 175

    [4]

    Almy G M, Horsfall Jr R B 1937 Phys. Rev. 51 491

    [5]

    Bauer S H, Herzberg G, Johns J W C 1964 J. Mol. Spectrosc. 13 256

    [6]

    Ottinger C, Reichmuth J 1981 J. Chem. Phys. 74 928

    [7]

    Ramsay D A, Sarre P J 1982 J. Chem. Soc.:Faraday Trans. 78 1331

    [8]

    Viteri C R, Gilkison A T, Rixon S J, Grant E R 2006 J. Chem. Phys. 124 144312

    [9]

    Rosmus P, Meyer W 1977 J. Chem. Phys. 66 13

    [10]

    Guest M F, Hirst D M 1981 Chem. Phys. Lett. 80 131

    [11]

    Klein R, Rosmus P, Werner H J 1982 J. Chem. Phys. 77 3559

    [12]

    Roothaan C C J 1960 Rev. Mod. Phys. 32 179

    [13]

    Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053

    [14]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259

    [15]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [16]

    Knowles P J Werner H J 1988 Chem. Phys. Lett. 145 514

    [17]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823

    [18]

    Woon D E, Dunning Jr T H 1995 J. Chem. Phys. 103 4572

    [19]

    Dunning Jr T H 1989 J. Chem. Phys. 90 1007

    [20]

    Murrell J N, Sorbie K S 1974 J. Chem. Soc.:Faraday Trans. 70 1552

    [21]

    Moore B C 1971 Atomic Energy Levels (Vol. 1) Natl. Stand Ref. Data Ser. Natl. Bur. Stand. No. 35 (Washington, DC:U.S. GPO) pp1-2 and 16-19

    [22]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure, Constants of Diatomic Molecules (Vol. 4) (New York:van Nostrand Reinhold) p90

    [23]

    Wang X Q, Yang C L, Su T, Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese)[王新强, 杨传路, 苏涛, 王美山 2009 58 6873]

  • [1]

    Nguyen J H V, Viteri C R, Hohenstein E G, Scherrill C D, Brown K R, Odom B 2011 New J. Phys. 13 063023

    [2]

    Li Y C, Meng T F, Li C L, Qiu X B, He X H, Yang W, Guo M J, Lai Y Z, Wei J L, Zhao Y T 2017 Acta Phys. Sin. 66 163101 (in Chinese)[李亚超, 孟腾飞, 李传亮, 邱选兵, 和小虎, 杨雯, 郭苗军, 赖云忠, 魏计林, 赵延霆 2017 66 163101]

    [3]

    Kusunoki I 1984 Chem. Phys. Lett. 105 175

    [4]

    Almy G M, Horsfall Jr R B 1937 Phys. Rev. 51 491

    [5]

    Bauer S H, Herzberg G, Johns J W C 1964 J. Mol. Spectrosc. 13 256

    [6]

    Ottinger C, Reichmuth J 1981 J. Chem. Phys. 74 928

    [7]

    Ramsay D A, Sarre P J 1982 J. Chem. Soc.:Faraday Trans. 78 1331

    [8]

    Viteri C R, Gilkison A T, Rixon S J, Grant E R 2006 J. Chem. Phys. 124 144312

    [9]

    Rosmus P, Meyer W 1977 J. Chem. Phys. 66 13

    [10]

    Guest M F, Hirst D M 1981 Chem. Phys. Lett. 80 131

    [11]

    Klein R, Rosmus P, Werner H J 1982 J. Chem. Phys. 77 3559

    [12]

    Roothaan C C J 1960 Rev. Mod. Phys. 32 179

    [13]

    Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053

    [14]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259

    [15]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [16]

    Knowles P J Werner H J 1988 Chem. Phys. Lett. 145 514

    [17]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823

    [18]

    Woon D E, Dunning Jr T H 1995 J. Chem. Phys. 103 4572

    [19]

    Dunning Jr T H 1989 J. Chem. Phys. 90 1007

    [20]

    Murrell J N, Sorbie K S 1974 J. Chem. Soc.:Faraday Trans. 70 1552

    [21]

    Moore B C 1971 Atomic Energy Levels (Vol. 1) Natl. Stand Ref. Data Ser. Natl. Bur. Stand. No. 35 (Washington, DC:U.S. GPO) pp1-2 and 16-19

    [22]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure, Constants of Diatomic Molecules (Vol. 4) (New York:van Nostrand Reinhold) p90

    [23]

    Wang X Q, Yang C L, Su T, Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese)[王新强, 杨传路, 苏涛, 王美山 2009 58 6873]

  • [1] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究.  , 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [2] 李晨曦, 郭迎春, 王兵兵. O2分子B3u-态势能曲线的从头计算.  , 2017, 66(10): 103101. doi: 10.7498/aps.66.103101
    [3] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花. GeS分子基态和低激发态的势能曲线与光谱性质.  , 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [4] 李瑞, 张晓美, 李奇楠, 罗旺, 金明星, 徐海峰, 闫冰. SiS低激发态势能曲线和光谱性质的全电子组态相互作用方法研究.  , 2014, 63(11): 113102. doi: 10.7498/aps.63.113102
    [5] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超. SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质.  , 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [6] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数.  , 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [7] 陈恒杰. LiAl分子基态、激发态势能曲线和振动能级.  , 2013, 62(8): 083301. doi: 10.7498/aps.62.083301
    [8] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究.  , 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [9] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究.  , 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [10] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. PS自由基X2Π态的势能曲线和光谱性质.  , 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [11] 郭雨薇, 张晓美, 刘彦磊, 刘玉芳. BP+基态和激发态的势能曲线和光谱性质的研究.  , 2013, 62(19): 193301. doi: 10.7498/aps.62.193301
    [12] 高雪艳, 尤凯, 张晓美, 刘彦磊, 刘玉芳. 多参考组态相互作用方法研究BS+离子的势能曲线和光谱性质.  , 2013, 62(23): 233302. doi: 10.7498/aps.62.233302
    [13] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究.  , 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [14] 王杰敏, 张蕾, 施德恒, 朱遵略, 孙金锋. AsO+同位素离子X2+和A2电子态的多参考组态相互作用方法研究.  , 2012, 61(15): 153105. doi: 10.7498/aps.61.153105
    [15] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数.  , 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [16] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数.  , 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [17] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数.  , 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [18] 王新强, 杨传路, 苏涛, 王美山. BH分子基态和激发态解析势能函数和光谱性质.  , 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [19] 高 峰, 杨传路, 张晓燕. 多参考组态相互作用方法研究ZnHg低激发态(1∏,3∏)的势能曲线和解析势能函数.  , 2007, 56(5): 2547-2552. doi: 10.7498/aps.56.2547
    [20] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数.  , 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
计量
  • 文章访问数:  7158
  • PDF下载量:  225
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-09
  • 修回日期:  2017-12-08
  • 刊出日期:  2019-02-20

/

返回文章
返回
Baidu
map