Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of potential energy curves and vibrational levels of low-lying electronic states of SbS

Wang Xin-Yu Wang Yi-Lin Shi Qian-Han Wang Qing-Long Yu Hong-Yang Jin Yuan-Yuan Li Song

Citation:

Theoretical study of potential energy curves and vibrational levels of low-lying electronic states of SbS

Wang Xin-Yu, Wang Yi-Lin, Shi Qian-Han, Wang Qing-Long, Yu Hong-Yang, Jin Yuan-Yuan, Li Song
PDF
HTML
Get Citation
  • In this paper, highly correlated ab initio calculations are performed for accurately determining the electronic structures and spectroscopic features of the Λ-S and Ω low-lying electronic states of SbS . The potential energy curves for 27 Λ-S states of the first three dissociation asymptotes are constructed. Spectroscopic constants and vibrational states for all bound states are well determined. The calculated atomic states for both atoms are consistent with experimental data quite well. Several low-lying Ω electronic states are also investigated, and their respective spectroscopic constants and vibrational states are obtained and compared with those of corresponding Λ-S states, which indicates that the spin-orbit coupling effect gives rise to a minor influence on the electronic states of SbS. To verify our computational accuracy, the additional calculations for the low-lying electronic states of PS, AsS and BiS are also carried out. Our derived results are in reasonable agreement with available experimental data. In addition, vibrational spectra from the excited Ω states to the ground state of SbS are simulated, including bands of X(3/2)→X(1/2), 2(1/2)→X(1/2), 4(1/2)→X(1/2), 5(1/2)→X(1/2) and 6(1/2)→X(1/2). The X(3/2)→X(1/2) band is found in the mid-infrared region, while the others are located in the visible region. The predictive results provided in this paper are expected to serve as a guideline for further researches, such as assisting laboratorial detections and analyzing observed spectrum of SbS.
      Corresponding author: Li Song, lsong@yangtzeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11804031).
    [1]

    Lian W T, Jiang C H, Yin Y W, Tang R F, Li G, Zhang L J, Che B, Chen T 2021 Nat. Commun. 12 3260Google Scholar

    [2]

    Zhao R M, Yang X L, Shi H L, Du M H 2021 Phys. Rev. Mater. 5 054605Google Scholar

    [3]

    Yang Y, Shi C W, Lv K, Wang Q, Sun X, Chen W C 2021 New J. Chem. 45 10357Google Scholar

    [4]

    Y Grad L, von Rohr F O, Hengsberger M, Osterwalder J 2021 Phys. Rev. Mater. 5 075401Google Scholar

    [5]

    Hu X K, Ma Y X, Pang Z X, Li P 2019 Chem. Phys. 523 110Google Scholar

    [6]

    Zhang J W, Lian W T, Yin Y W, et al. 2020 Solar RRL 4 2000048Google Scholar

    [7]

    Shimauchi M, Nishiyama Y 1968 Sci. Light 17 76

    [8]

    Fowler A, Bakker C J 1932 Proc. Roy. Soc. (London) A 136 28

    [9]

    Zeeman P B 1951 Can. J Phys. 29 174Google Scholar

    [10]

    Barrow R F, Drummond G, Zeeman P B 1954 Proc. Roy. Soc. (London) A 67 365

    [11]

    Amano T, Saito S, Hirota E, Morino Y 1969 J. Mol. Spectrosc. 32 97Google Scholar

    [12]

    Jenouvrier A, Pascat B 1973 Can. J. Phys. 51 2143Google Scholar

    [13]

    Jenouvrier A, Pascat B 1980 Can. J. Phys. 58 1275Google Scholar

    [14]

    Wang T T, Li C Y, Zheng X F, Chen Y 2007 Chin. Sci. Bull. 52 596Google Scholar

    [15]

    Dressler K, Miescher E 1955 Proc. Roy. Soc. (London) A 68 542Google Scholar

    [16]

    Dressler K 1955 Ph. D. Dissertation (Basel: Universität Basel)

    [17]

    Narasimham N A, Subramanian T K B 1969 J. Mol. Spectrosc. 29 294Google Scholar

    [18]

    Narasimham N A, Subramanian T K B 1971 J. Mol. Spectrosc. 37 371Google Scholar

    [19]

    Jenouvrier A, Pascat B 1978 Can. J. Phys. 56 1088Google Scholar

    [20]

    Balasubramanian T K, Dixit M N, Narasimham N A 1979 Pramana 12 707Google Scholar

    [21]

    Kawaguchi K, Hirota E, Ohishi M, Suzuki H, Takano S, Yamamoto S, Saito S 1988 J. Mol. Spectrosc. 130 81Google Scholar

    [22]

    Ohishi M, Yamamoto S, Saito S, et al. 1988 Astrophys. J 329 511Google Scholar

    [23]

    Klein H, Klisch E, Winnewisser G 1999 Z. Naturforschung A 54 137Google Scholar

    [24]

    Shimauchi M, 1969 Sci. Light 18 90

    [25]

    Shimauchi M, 1971 Can. J. Phys. 49 1249Google Scholar

    [26]

    Shimauchi M, Sakaba Y, Kikuchi S 1972 Sci. Light 21 1

    [27]

    Shimauchi M, Iwata H, Matsuno T, Sakaba Y, Lee S K, Karasawa S 1972 Sci. Light 21 145

    [28]

    Shimauchi M, Karasawa S 1973 Sci. Light 22 127

    [29]

    Barrow R F, Stobart O V, Vaughan H 1967 Proc. Phys. Soc. Lond. 90 555Google Scholar

    [30]

    Patiño P, Eland J H D, Barrow R F 1984 J. Phys. B:At. Mol. Phys. 17 1009Google Scholar

    [31]

    Izumi K, Cohen E A, Setzer K D, Fink E H, Kawaguchi K 2008 J. Mol. Spectrosc. 252 198Google Scholar

    [32]

    Setzer K D, Meinecke F, Fink E H 2009 J. Mol. Spectrosc. 258 56Google Scholar

    [33]

    O’Hare P A G 1970 J. Chem. Phys. 52 2992Google Scholar

    [34]

    Bialski M, Grein F 1976 J. Mol. Spectrosc. 61 321Google Scholar

    [35]

    Karna S P, Grein F 1986 J. Mol. Spectrosc. 120 284Google Scholar

    [36]

    Karna S P, Bruna P J, Grein F 1988 J. Phys. B:At. Mol. Opt. Phys. 21 1303Google Scholar

    [37]

    Karna S P, Grein F 1992 Mol. Phys. 77 135Google Scholar

    [38]

    Chong D P 1994 Chem. Phys. Lett. 220 102Google Scholar

    [39]

    Moussaoui Y, Ouamerali O, De Maré G R 1998 J Mol. Struct. Theochem. 425 237Google Scholar

    [40]

    Kalcher J 2002 Phys. Chem. Chem. Phys. 4 3311Google Scholar

    [41]

    Peebles L R, Marshall P 2002 Chem. Phys. Lett. 366 520Google Scholar

    [42]

    Czernek J, Živný O 2004 Chem. Phys. 303 137Google Scholar

    [43]

    Yaghlane S B, Francisco J S, Hochlaf M 2012 J. Chem. Phys. 136 244309Google Scholar

    [44]

    Yang, J, Kang Y, Wang X, Bai X 2013 J. Mol. Model 19 5199Google Scholar

    [45]

    Lingott R M, Liebermann H P, Alekseyev A B, Buenker R J 1999 J. Chem. Phys. 110 11294Google Scholar

    [46]

    Shi D H, Xing W, Sun J F, Zhu Z L 2012 Eur. Phys. J. D 66 173Google Scholar

    [47]

    Gao Y F, Gao T, Gong M 2013 J Quant. Spectrosc. Radiat. Transf. 129 193Google Scholar

    [48]

    刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略 2013 62 203104Google Scholar

    Liu H, Xing W, Shi D H, Sun J F, Zhu Z L 2013 Acta Phys. Sin. 62 203104Google Scholar

    [49]

    Shi D H, Song Z Y, Niu X H, Sun J F, Zhu Z L 2016 Spectrochim. Acta A Mol. Biomol. Spectrosc. 153 30Google Scholar

    [50]

    Prajapat L, Jagoda P, Lodi L, Gorman M N, Yurchenko S N, Tennyson J 2017 MNRAS 472 3648Google Scholar

    [51]

    Zhou D, Shi D H, Sun J F 2019 J. Quant. Spectrosc. Radiat. Transf. 230 120Google Scholar

    [52]

    de Almeida A A, Andreazza C M, Borin A C 2020 Theor. Chem. Acc. 139 33Google Scholar

    [53]

    Reddy R R, Reddy A S R, Rao T V R 1985 Pramana 25 187Google Scholar

    [54]

    Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053Google Scholar

    [55]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [56]

    Peterson K A, Dunning Jr. T H 2002 J. Chem. Phys. 117 10548Google Scholar

    [57]

    Peterson K A, Yousaf K E 2010 J. Chem. Phys. 133 174116Google Scholar

    [58]

    Murrell J N, Sorbie K S 1974 J. Chem. Soc. Faraday Trans. 2 1552

    [59]

    李松, 韩立波, 陈善俊, 段传喜 2013 62 113102Google Scholar

    Li S, Han L B, Chen S J, Duan C X 2013 Acta Phys. Sin. 62 113102Google Scholar

    [60]

    Li S, Chen S J, Zhu D S, Fan Q C 2013 Comput. Theor. Chem. 1017 136Google Scholar

    [61]

    Lu N, Wu W Q, Zhang C Z, Wan M J, Jin Y Y, Zhang W B, Chen S J, Li S 2020 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 237 118301Google Scholar

    [62]

    Li S, Chen S J, Chen Y, Chen P 2016 Chin. Phys. B. 25 033101Google Scholar

    [63]

    Chen P, Wang N, Li S, Chen S J 2017 J. Quant. Spectrosc. Radiat. Transf. 201 104Google Scholar

    [64]

    万明杰, 李松, 金成国, 罗华锋 2019 68 063103Google Scholar

    Wan M J, Li S, Jin C G, Luo H F 2019 Acta Phys. Sin. 68 063103Google Scholar

    [65]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [66]

    Werner H J, Knowles P J, Knizia G, et al. MOLPRO, version 2015.1, A Package of ab initio Programs, 2015

    [67]

    Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transf. 186 167Google Scholar

    [68]

    Sansonetti J E, Martin W C 2005 J. Phys. Chem. Ref. Data 34 1559Google Scholar

  • 图 1  SbS的Λ-S态势能曲线 (a)二重、六重态; (b), (c)四重态

    Figure 1.  Potential energy curves of Λ-S states of SbS: (a) Doublet and sextet states; (b), (c) quartet states.

    图 2  SbS的Ω态势能曲线

    Figure 2.  Potential energy curves of Ω states of SbS.

    图 3  SbS的振动谱带

    Figure 3.  Vibrational transition bands of SbS.

    表 1  SbS的Λ-S态离解极限

    Table 1.  Dissociation relationships of the Λ-S states of SbS.

    原子态Λ-S态ΔE/cm–1
    实验值[68]计算值
    $ {\text{Sb}}({}^4{{\text{S}}_{\text{u}}}) + {\text{S}}{(^3}{{\text{P}}_{\text{g}}}) $${{\text{1}}^2}{\Sigma ^ + }$, ${{\rm X}^2}\Pi $ , ${{\text{1}}^4}{\Sigma ^ + }$, ${{\text{1}}^4}\prod $, ${{\text{1}}^6}{\Sigma ^ + }$, $ {1^6}\Pi $00
    $ {\text{Sb}}({}^4{{\text{S}}_{\text{u}}}) + {\text{S}}{(^1}{{\text{D}}_{\text{g}}}) $${1^4}{\Sigma ^ - }$, ${1^4}\Delta $, $2{}^4\Pi $9238.6099346
    $ {\text{Sb}}({}^2{{\text{D}}_{\text{u}}}) + {\text{S}}{(^3}{{\text{P}}_{\text{g}}}) $${2^2}{\Sigma ^ + }$, ${3^2}{\Sigma ^ + }$, ${1^2}{\Sigma ^ - }$, ${1^2}\Delta $, ${2^2}\Delta $, $2{}^2\Pi $, $3{}^2\Pi $, $4{}^2\Pi $, ${1^2}\Phi $,
    ${2^4}{\Sigma ^ + }$, ${3^4}{\Sigma ^ + }$, ${2^4}{\Sigma ^ - }$, ${2^4}\Delta $, ${3^4}\Delta $, $3{}^4\Pi $, $4{}^4\Pi $, $5{}^4\Pi $, ${1^4}\Phi $
    9854.01810022
    DownLoad: CSV

    表 2  SbS的Λ-S态光谱常数

    Table 2.  Spectroscopic constants of the Λ-S states of SbS.

    Λ-S态ReDe/eVBe/cm–1ωe/cm–1ωeχe /cm–1Te/cm–1RMS/cm–1电子组态(组态系数)
    ${{\text{X}}^{\text{2}}}\Pi $2.21993.440.1348479.81.5100.5715σαβxαβyαβxα (72.77)
    ${1^4}\Pi $2.44811.840.1108343.61.17128840.6515σαβxαβyαxαyα (84.83)
    ${{\text{2}}^{\text{2}}}\Pi $2.43882.600.1117356.30.89167210.6415σαβxαβyβxαyα (52.26)
    ${{\text{3}}^{\text{2}}}\Pi $2.45132.160.1106341.80.97203060.8815σαβxαβyαxαyβ (31.90)
    ${1^4}{\Sigma ^ - }$2.33541.880.1218361.12.54218701.5315σαxαβyαβxαyα (83.08)
    ${4^{\text{2}}}\Pi $2.45541.490.1109341.11.97257962.8515σαβxαyαβyαβ (59.44)
    ${{\text{1}}^{\text{2}}}{\Sigma ^ + }$第一势阱2.46990.450.1089254.40.88261853.6415σαβ16σαxαβyαβ (52.15)
    ${1^{\text{2}}}{\Sigma ^ - }$2.37351.170.1179340.16.30283507.0315σαxαβyαβxβyα (61.23)
    ${1^{\text{2}}}\Delta $2.35451.040.1198343.52.51292711.8015σαxαβyαβxαyβ (60.01)
    ${1^2}\Phi $2.54971.450.1022265.11.96325086.6315σαβxαyαxαβyβ(50.92)
    ${2^{\text{2}}}{\Sigma ^ + }$2.36780.630.1185337.01.73332502.1915σαxαβyαβyαβ (38.05)
    15σαxαβyαβxαβ (38.05)
    ${1^4}\Delta $2.84620.340.0820188.32.40343890.8415σαβ16σαxαβyαyα (35.39)
    15σαβ16σαxαyαβxα (35.39)
    ${2^4}\Pi $3.35550.280.0590134.11.52347910.3815σα16σαxαβyβxαyα (27.31)
    ${3^{\text{2}}}{\Sigma ^ + }$3.04780.320.0715189.74.99365543.7915σαxαβyαβyαβ (16.85)
    15σαxαβyαβxαβ (16.85)
    ${2^4}{\Sigma ^ + }$3.45740.090.055687.11.80370470.8415σαxαyαβxαyαβ (14.08)
    15σαxαβyαxαβyα (14.08)
    ${2^4}{\Sigma ^ - }$第一势阱2.83560.060.0826184.46.87372601.0115σαβ16σαxαyαβyα (35.84)
    15σαβ16σαxαβyαxα (35.84)
    ${2^4}\Delta $3.95700.050.042495.37.03373390.9615σα16σαβxαyαβxα (17.70)
    15σα16σαβxαβyαyα (17.70)
    DownLoad: CSV

    表 3  XS (X = N, P, As, Sb, Bi)自由基电子基态${{\text{X}}^{\text{2}}}\Pi $的光谱常数

    Table 3.  Spectroscopic constants of the ground state ${{\text{X}}^{\text{2}}}\Pi $of XS (X = N, P, As, Sb, Bi) radicals.

    ReDe/eVωe/cm–1Be/cm–1
    理论值[35] a1.5151220.50.7542
    理论值[40] b1.50581202.40.742
    NS理论值[46] c1.49624.85041216.170.77323
    理论值[47] d1.4981220.90.7715
    实验值[9]1.495(7)0.7736(4)
    实验值[11]1.4938(2)
    理论值[36] e1.944735.60.2836
    理论值[40] b1.9148728.00.292
    理论值[43] f1.879732.00.2936
    PS理论值[48] g1.89724.5272741.00.2979
    理论值[52] h1.918708
    实验值[15]1.92739.50.29
    实验值[18]1.900(7)
    实验值[21]1.8977405(45)739.13
    (42)
    0.2975216
    (14)
    本文工作1.90144.41739.50.2960
    理论值[53] i4.15(13)
    理论值[40] b2.0395559.20.181
    AsS理论值[44] j2.0453.94
    理论值[49] k2.01804.0554565.190.18472
    实验值[28]2.0174567.940.18476
    本文工作2.02083.83564.40.1839
    SbS本文工作2.21993.44479.80.1348
    BiS本文工作2.31183.12424.90.1135
    注: a MRSDCI/modified basis sets; b CAS-ACPF/cc-pVQZ; c MRCI+Q/AV5Z+CV+DK; d MRCI+Q/aug-cc-pV5Z; e MRSDCI/modified basis sets; f MRCI/aug-cc-pV5Z; g MRCI+Q/56+CV+DK; h MRCI/modified basis sets; i Obtained from the RKR method; j MP2(full)/6-31G(d); k MRCI+Q/Q5+CV+DK.
    DownLoad: CSV

    表 4  SbS自由基Ω态的离解极限

    Table 4.  Dissociation relationships of the Ω states of SbS.

    原子态Ω态ΔE/cm–1
    实验值[68]本文计算值
    $\rm {{Sb} }({}^4{ {{S} }_{ {3/2} } }) + {{S} }{(^3}{ {{P} }_2})$7/2, 5/2(2),
    3/2(3), 1/2(4)
    00
    $\rm{{Sb} }({}^4{ {{S} }_{ {3/ } 2} }) + {{S} }{(^3}{ {{P} }_1})$5/2, 3/2(2),
    1/2(3)
    396.055410.46
    $\rm {{Sb} }({}^4{ {{S} }_{ {3/2} } }) + {{S} }{(^3}{ {{P} }_0})$3/2, 1/2573.640605.81
    DownLoad: CSV

    表 5  SbS自由基的Ω态光谱常数

    Table 5.  Spectroscopic constants of the Ω states of SbS.

    Ω态ReDe/eVBe/cm–1ωe/cm–1ωeχe/cm–1Te/cm–1RMS/cm–1
    X(1/2)2.21953.620.1348476.31.3602.36
    实验值[7]4801.2
    X(3/2)2.22013.360.1348477.31.9720252.25
    实验值[7]4701.6
    2(1/2)2.45271.930.1104341.40.43136462.70
    3(1/2)2.45381.900.1103342.20.62138882.28
    2(3/2)2.45031.860.1106346.51.17141230.30
    1(5/2)2.45371.830.1103344.61.16143460.38
    3(3/2)2.44282.560.1113364.71.46176322.94
    4(1/2)2.44672.480.1110367.32.46183409.74
    4(3/2)2.45242.180.1105339.70.41214133.17
    5(1/2)2.45602.130.1101342.81.03216102.17
    6(1/2)2.34621.950.1207352.31.41229476.01
    5(3/2)2.34761.910.1205356.62.74232688.04
    DownLoad: CSV

    表 6  XS (X = N, P, As, Sb, Bi)自由基Ω基态的光谱常数

    Table 6.  Spectroscopic constants of the ground Ω state of XS (X = N, P, As, Sb, Bi) radicals.

    Ω态ReDe/eVωe/cm–1Be/cm–1Te/cm–1
    NS
    X(1/2)理论值[46] a1.49624.85621216.430.773200
    理论值[51] b1.49764.75861213.300
    实验值[12]1.49551219.140.77300
    实验值[13]1.49551218.970.77300
    实验值[14]1.49311218.10.7758(11)0
    X(3/2)理论值[46] a1.49624.84461215.930.77326223.64
    理论值[51] b1.49754.74121213.02221.67
    实验值[12]1.49011218.900.7777223.15
    实验值[13]1.49011218.900.7777222.98
    实验值[14]1.48841218.00.7807(2)220.4
    PS
    X(1/2)实验值[19]1.899739.54(2)0.29724(5)0
    本文工作1.90154.40738.80.29600
    X(3/2)实验值[19]1.8974.566739.45(2)0.29765(5)321.93
    本文工作1.90144.37738.60.2960324.8
    AsS
    X(1/2)实验值[24]567.9(4)0.184760
    本文工作2.02063.89565.60.18390
    X(3/2)实验值[24]2.0174566.1(3)0.18492
    实验值[25]2.0216(3)562.40(16)0.18408(4)
    本文工作2.02103.78563.30.1838893.3
    SbS
    X(1/2)本文工作2.21953.62476.30.13480
    X(3/2)本文工作2.22013.36477.30.13482025.0
    BiS
    X(1/2)理论值[45] c2.3654070
    实验值[29]2.3194408.710.113010
    实验值[30]2.3122(10)404.68(8)0.11371(10)0
    实验值[31]2.3188(1)408.67(7)0.113063(10)0
    实验值[32]408.66(3)0
    本文工作2.31313.58429.50.11340
    X(3/2)理论值[45] c2.3614047076
    实验值[31]2.31525(13)403.95(21)0.113411(13)6905.02(18)
    实验值[32]2.31489(11)404.501(94)
    本文工作2.31912.87413.80.11285781
    注: a MRCI+Q/AV5Z+CV+DK+SO; b MRCI+Q/56+CV+DK+SO; c MRDCI+Q/modified basis sets.
    DownLoad: CSV

    表 7  SbS的Λ-S及其对应Ω态的振动能级、转动常数和离心畸变常数(单位: cm–1)

    Table 7.  Vibrational energy levels, rotational constants and centrifugal distortion constants for the Ω and its respective Λ-S states of SbS (in cm–1).

    vGvBv108DvGvBv108DvGvBv108Dv
    X(1/2)X(3/2)${\text{X}}{}^2\Pi $
    0205.30.13504.30200.70.13494.37212.40.13514.18
    1682.70.13454.32673.60.13444.39696.40.13444.38
    21156.90.13404.321143.10.13384.401171.80.13394.40
    31628.20.13344.331609.40.13324.411642.20.13344.32
    42096.60.13294.352072.60.13274.442110.00.13284.28
    52561.90.13234.392532.60.13214.482575.70.13234.31
    3(3/2)4(1/2)${2^2}\Pi $
    0160.50.11184.32165.50.11134.44153.70.11194.42
    1519.50.11144.31517.20.11094.44508.80.11144.38
    2876.80.11094.29866.90.11044.42862.30.11084.37
    31232.50.11054.291214.70.11004.431214.10.11044.33
    41586.40.11014.321560.60.10954.461564.30.10994.34
    51938.30.10974.341904.30.10904.491912.90.10954.35
    4(3/2)5(1/2)${3^2}\Pi $
    0169.70.11064.58170.60.11034.59163.40.11084.73
    1512.30.11014.59511.80.10984.60501.10.11024.54
    2852.60.10964.59850.70.10934.60839.60.10964.57
    31190.70.10914.601187.40.10894.611176.70.10914.58
    41526.50.10864.621521.90.10844.631512.00.10864.61
    51860.00.10814.621854.00.10794.641845.00.10814.64
    6(1/2)5(3/2)${1^4}{\Sigma ^ - }$
    0131.60.12045.73128.30.12035.80151.10.12155.33
    1479.40.11975.60473.60.11965.72517.90.12145.42
    2826.20.11905.66817.00.11895.75881.00.12046.22
    31170.20.11835.851157.70.11825.861230.60.11946.24
    41510.20.11775.911494.90.11755.911571.70.11865.89
    51846.60.11715.661828.60.11695.821909.20.11795.87
    2(1/2)3(1/2)$1{}^4\Pi $
    0170.10.11064.55170.30.11064.55160.20.11114.73
    1514.30.11024.55514.00.11014.56499.20.11044.56
    2856.30.10974.56855.50.10964.57838.70.10994.63
    31196.00.10924.571194.70.10914.581176.20.10944.65
    41533.50.10874.581531.60.10864.591511.40.10894.67
    51868.70.10824.581866.20.10814.601844.20.10844.69
    2(3/2)1(5/2)
    0168.80.11084.56170.40.11054.57
    1513.40.11034.57513.20.11004.58
    2855.60.10984.58853.60.10954.58
    31195.50.10934.591191.70.10904.60
    41533.00.10884.601527.50.10854.61
    51868.20.10834.611860.80.10804.62
    DownLoad: CSV

    表 8  XS (X = P, As, Bi)自由基Ω基态的振动能级、转动常数和离心畸变常数(单位: cm–1)

    Table 8.  Vibrational energy levels, rotational constants and centrifugal distortion constants for the ground Ω state of XS (X = P, As, Bi) radicals (in cm–1).

    vGvBv107DvGvBv107DvvGvBv108Dv
    PS X(1/2)PS X(3/2)AsS X(3/2)
    0368.40.295501.91368.20.295511.9131952.30.181087.90
    0.29649 a1.85 a0.29695 a1.9 a0.18116(8) b8.6(5) b
    11101.30.293941.921100.80.293941.9242501.20.180247.93
    0.29469 a1.7 a0.29543 a1.8 a0.18033(4) b8.7(8) b
    21828.20.292371.921827.20.292371.9253046.00.179397.93
    0.29333 a1.9 a0.29385 a2.0 a0.17950(4) b8.8(7) b
    32549.00.290781.922547.60.290781.9263587.00.178537.89
    0.29161 a1.85 a0.29223 a1.95 a0.17865(5) b9.1(9) b
    43264.00.289181.923262.20.289171.9374124.10.177657.85
    0.29015 a1.9 a0.29065 a1.8 a0.17782(4) b9.7(8) b
    53973.20.287561.933971.00.287551.93
    0.28855 a2.0 a0.28933 a1.8 aBiS X(1/2)
    64676.70.285951.944674.00.285941.940213.90.113443.19
    0.28710 a1.9 a0.28740 a2.0 a0.112764(5) c3.34(4) c
    75374.20.284341.955371.00.284321.951641.00.113023.19
    0.28653 a1.7 a21065.60.112603.19
    86065.70.282731.966061.90.282711.9631488.00.112183.20
    0.28416 a2.0 a
    注: a为文献[19]实验值; b为文献[25]实验值; c为文献[29]实验值.
    DownLoad: CSV
    Baidu
  • [1]

    Lian W T, Jiang C H, Yin Y W, Tang R F, Li G, Zhang L J, Che B, Chen T 2021 Nat. Commun. 12 3260Google Scholar

    [2]

    Zhao R M, Yang X L, Shi H L, Du M H 2021 Phys. Rev. Mater. 5 054605Google Scholar

    [3]

    Yang Y, Shi C W, Lv K, Wang Q, Sun X, Chen W C 2021 New J. Chem. 45 10357Google Scholar

    [4]

    Y Grad L, von Rohr F O, Hengsberger M, Osterwalder J 2021 Phys. Rev. Mater. 5 075401Google Scholar

    [5]

    Hu X K, Ma Y X, Pang Z X, Li P 2019 Chem. Phys. 523 110Google Scholar

    [6]

    Zhang J W, Lian W T, Yin Y W, et al. 2020 Solar RRL 4 2000048Google Scholar

    [7]

    Shimauchi M, Nishiyama Y 1968 Sci. Light 17 76

    [8]

    Fowler A, Bakker C J 1932 Proc. Roy. Soc. (London) A 136 28

    [9]

    Zeeman P B 1951 Can. J Phys. 29 174Google Scholar

    [10]

    Barrow R F, Drummond G, Zeeman P B 1954 Proc. Roy. Soc. (London) A 67 365

    [11]

    Amano T, Saito S, Hirota E, Morino Y 1969 J. Mol. Spectrosc. 32 97Google Scholar

    [12]

    Jenouvrier A, Pascat B 1973 Can. J. Phys. 51 2143Google Scholar

    [13]

    Jenouvrier A, Pascat B 1980 Can. J. Phys. 58 1275Google Scholar

    [14]

    Wang T T, Li C Y, Zheng X F, Chen Y 2007 Chin. Sci. Bull. 52 596Google Scholar

    [15]

    Dressler K, Miescher E 1955 Proc. Roy. Soc. (London) A 68 542Google Scholar

    [16]

    Dressler K 1955 Ph. D. Dissertation (Basel: Universität Basel)

    [17]

    Narasimham N A, Subramanian T K B 1969 J. Mol. Spectrosc. 29 294Google Scholar

    [18]

    Narasimham N A, Subramanian T K B 1971 J. Mol. Spectrosc. 37 371Google Scholar

    [19]

    Jenouvrier A, Pascat B 1978 Can. J. Phys. 56 1088Google Scholar

    [20]

    Balasubramanian T K, Dixit M N, Narasimham N A 1979 Pramana 12 707Google Scholar

    [21]

    Kawaguchi K, Hirota E, Ohishi M, Suzuki H, Takano S, Yamamoto S, Saito S 1988 J. Mol. Spectrosc. 130 81Google Scholar

    [22]

    Ohishi M, Yamamoto S, Saito S, et al. 1988 Astrophys. J 329 511Google Scholar

    [23]

    Klein H, Klisch E, Winnewisser G 1999 Z. Naturforschung A 54 137Google Scholar

    [24]

    Shimauchi M, 1969 Sci. Light 18 90

    [25]

    Shimauchi M, 1971 Can. J. Phys. 49 1249Google Scholar

    [26]

    Shimauchi M, Sakaba Y, Kikuchi S 1972 Sci. Light 21 1

    [27]

    Shimauchi M, Iwata H, Matsuno T, Sakaba Y, Lee S K, Karasawa S 1972 Sci. Light 21 145

    [28]

    Shimauchi M, Karasawa S 1973 Sci. Light 22 127

    [29]

    Barrow R F, Stobart O V, Vaughan H 1967 Proc. Phys. Soc. Lond. 90 555Google Scholar

    [30]

    Patiño P, Eland J H D, Barrow R F 1984 J. Phys. B:At. Mol. Phys. 17 1009Google Scholar

    [31]

    Izumi K, Cohen E A, Setzer K D, Fink E H, Kawaguchi K 2008 J. Mol. Spectrosc. 252 198Google Scholar

    [32]

    Setzer K D, Meinecke F, Fink E H 2009 J. Mol. Spectrosc. 258 56Google Scholar

    [33]

    O’Hare P A G 1970 J. Chem. Phys. 52 2992Google Scholar

    [34]

    Bialski M, Grein F 1976 J. Mol. Spectrosc. 61 321Google Scholar

    [35]

    Karna S P, Grein F 1986 J. Mol. Spectrosc. 120 284Google Scholar

    [36]

    Karna S P, Bruna P J, Grein F 1988 J. Phys. B:At. Mol. Opt. Phys. 21 1303Google Scholar

    [37]

    Karna S P, Grein F 1992 Mol. Phys. 77 135Google Scholar

    [38]

    Chong D P 1994 Chem. Phys. Lett. 220 102Google Scholar

    [39]

    Moussaoui Y, Ouamerali O, De Maré G R 1998 J Mol. Struct. Theochem. 425 237Google Scholar

    [40]

    Kalcher J 2002 Phys. Chem. Chem. Phys. 4 3311Google Scholar

    [41]

    Peebles L R, Marshall P 2002 Chem. Phys. Lett. 366 520Google Scholar

    [42]

    Czernek J, Živný O 2004 Chem. Phys. 303 137Google Scholar

    [43]

    Yaghlane S B, Francisco J S, Hochlaf M 2012 J. Chem. Phys. 136 244309Google Scholar

    [44]

    Yang, J, Kang Y, Wang X, Bai X 2013 J. Mol. Model 19 5199Google Scholar

    [45]

    Lingott R M, Liebermann H P, Alekseyev A B, Buenker R J 1999 J. Chem. Phys. 110 11294Google Scholar

    [46]

    Shi D H, Xing W, Sun J F, Zhu Z L 2012 Eur. Phys. J. D 66 173Google Scholar

    [47]

    Gao Y F, Gao T, Gong M 2013 J Quant. Spectrosc. Radiat. Transf. 129 193Google Scholar

    [48]

    刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略 2013 62 203104Google Scholar

    Liu H, Xing W, Shi D H, Sun J F, Zhu Z L 2013 Acta Phys. Sin. 62 203104Google Scholar

    [49]

    Shi D H, Song Z Y, Niu X H, Sun J F, Zhu Z L 2016 Spectrochim. Acta A Mol. Biomol. Spectrosc. 153 30Google Scholar

    [50]

    Prajapat L, Jagoda P, Lodi L, Gorman M N, Yurchenko S N, Tennyson J 2017 MNRAS 472 3648Google Scholar

    [51]

    Zhou D, Shi D H, Sun J F 2019 J. Quant. Spectrosc. Radiat. Transf. 230 120Google Scholar

    [52]

    de Almeida A A, Andreazza C M, Borin A C 2020 Theor. Chem. Acc. 139 33Google Scholar

    [53]

    Reddy R R, Reddy A S R, Rao T V R 1985 Pramana 25 187Google Scholar

    [54]

    Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053Google Scholar

    [55]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [56]

    Peterson K A, Dunning Jr. T H 2002 J. Chem. Phys. 117 10548Google Scholar

    [57]

    Peterson K A, Yousaf K E 2010 J. Chem. Phys. 133 174116Google Scholar

    [58]

    Murrell J N, Sorbie K S 1974 J. Chem. Soc. Faraday Trans. 2 1552

    [59]

    李松, 韩立波, 陈善俊, 段传喜 2013 62 113102Google Scholar

    Li S, Han L B, Chen S J, Duan C X 2013 Acta Phys. Sin. 62 113102Google Scholar

    [60]

    Li S, Chen S J, Zhu D S, Fan Q C 2013 Comput. Theor. Chem. 1017 136Google Scholar

    [61]

    Lu N, Wu W Q, Zhang C Z, Wan M J, Jin Y Y, Zhang W B, Chen S J, Li S 2020 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 237 118301Google Scholar

    [62]

    Li S, Chen S J, Chen Y, Chen P 2016 Chin. Phys. B. 25 033101Google Scholar

    [63]

    Chen P, Wang N, Li S, Chen S J 2017 J. Quant. Spectrosc. Radiat. Transf. 201 104Google Scholar

    [64]

    万明杰, 李松, 金成国, 罗华锋 2019 68 063103Google Scholar

    Wan M J, Li S, Jin C G, Luo H F 2019 Acta Phys. Sin. 68 063103Google Scholar

    [65]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [66]

    Werner H J, Knowles P J, Knizia G, et al. MOLPRO, version 2015.1, A Package of ab initio Programs, 2015

    [67]

    Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transf. 186 167Google Scholar

    [68]

    Sansonetti J E, Martin W C 2005 J. Phys. Chem. Ref. Data 34 1559Google Scholar

  • [1] Zhang Zhi-Yu, Zhao Yang, Qing Bo, Zhang Ji-Yan, Ma Jian-Yi, Lin Cheng-Liang, Yang Guo-Hong, Wei Min-Xi, Xiong Gang, Lü Min, Huang Cheng-Wu, Zhu Tuo, Song Tian-Ming, Zhao Yan, Zhang Yu-Xue, Zhang Lu, Li Li-Ling, Du Hua-Bing, Che Xing-Sen, Li Yu-Kun, Zhan Xia-Yu, Yang Jia-Min. Density effect on electronic structure of warm dense matter based on X-ray fluorescence spectroscopy. Acta Physica Sinica, 2023, 72(24): 245201. doi: 10.7498/aps.72.20231215
    [2] Guo Rui, Tan Han, Yuan Qin-Yue, Zhang Qing, Wan Ming-Jie. Spectroscopic and transition properties of LiCl anion. Acta Physica Sinica, 2022, 71(4): 043101. doi: 10.7498/aps.71.20211688
    [3] Hou Qiu-Yu, Guan Hao-Yi, Huang Yu-Lu, Chen Shi-Lin, Yang Ming, Wan Ming-Jie. Electronic structures and transition properties of AsH+ cation. Acta Physica Sinica, 2022, 71(21): 213101. doi: 10.7498/aps.71.20221104
    [4] Hou Qiu-Yu,  Guan Hao-Yi,  Huang Yu-Lu,  Chen Shi-Lin,  Yang Ming,  Wan Ming-Jie. The electronic structures and transition properties of AsH+ cation. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221104
    [5] Gao Feng, Zhang Hong, Zhang Chang-Zhe, Zhao Wen-Li, Meng Qing-Tian. Accurate theoretical study of potential energy curves, spectroscopic parameters, vibrational energy levels and spin-orbit coupling interaction on SiH+(X1Σ+) ion. Acta Physica Sinica, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [6] Wan Ming-Jie, Liu Fu-Ti, Huang Duo-Hui. Spectroscopic and transition properties of SeH anion including spin-orbit coupling. Acta Physica Sinica, 2021, 70(3): 033101. doi: 10.7498/aps.70.20201413
    [7] Spectroscopic and transition properties of LiCl- anion. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211688
    [8] Theoretical study of the potential energy curves and vibrational levels of low-lying electronic states of SbS. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211441
    [9] Hua Ya-Wen, Liu Yi-Liang, Wan Ming-Jie. Theoretical study on electronic structure and transition properties of excited states for SeH+ anion. Acta Physica Sinica, 2020, 69(15): 153101. doi: 10.7498/aps.69.20200278
    [10] Xing Wei, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lüe. icMRCI+Q study on spectroscopic properties and predissociation mechanisms of electronic states of BF+ cation. Acta Physica Sinica, 2018, 67(6): 063301. doi: 10.7498/aps.67.20172114
    [11] Wei Chang-Li,  Liao Hao,  Luo Tai-Sheng,  Ren Yin-Shuan,  Yan Bing. Theoretical study on potential curves and spectroscopic constants of low-lying electronic states of Na2+ cation. Acta Physica Sinica, 2018, 67(24): 243101. doi: 10.7498/aps.67.20181690
    [12] Liu Xiao-Jun, Miao Feng-Juan, Li Rui, Zhang Cun-Hua, Li Qi-Nan, Yan Bing. Configuration interaction study on electronic structures and transitional properties of excited states of GeO molecule. Acta Physica Sinica, 2015, 64(12): 123101. doi: 10.7498/aps.64.123101
    [13] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lü, Lü Shu-Xia. Theoretical study on spectroscopic properties and predissociation mechanisms of the electronic states of carbon monofluoride. Acta Physica Sinica, 2015, 64(15): 153101. doi: 10.7498/aps.64.153101
    [14] Li Gui-Xia, Jiang Yong-Chao, Ling Cui-Cui, Ma Hong-Zhang, Li Peng. The characteristics of excited states for HF+ ion under spin-orbit coupling. Acta Physica Sinica, 2014, 63(12): 127102. doi: 10.7498/aps.63.127102
    [15] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic properties of AlC (X4∑-, B4∑-) molecule. Acta Physica Sinica, 2013, 62(11): 113101. doi: 10.7498/aps.62.113101
    [16] Wang Jie-Min, Feng Heng-Qiang, Sun Jin-Feng, Shi De-Heng, Li Wen-Tao, Zhu Zun-Lüe. A study on spectroscopic parameters of X2+, A2 and B2+ low-lying electronic states of SiN radical. Acta Physica Sinica, 2013, 62(1): 013105. doi: 10.7498/aps.62.013105
    [17] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. MRCI+Q study on spectroscopic parameters and molecular constants of X1Σ+ and A1Π electronic states of the SiSe molecule. Acta Physica Sinica, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [18] Wang Hua, Liu Shi-Lin, Liu Jie, Wang Feng-Yan, Jiang Bo, Yang Xue-Ming. Rovibronic spectrum of N2O+ ion at the A2Σ+ state. Acta Physica Sinica, 2008, 57(2): 796-802. doi: 10.7498/aps.57.796
    [19] Zhang Chang-Wen, Li Hua, Dong Jian-Min, Wang Yong-Juan, Pan Feng-Chun, Gu Yong-Quan, Li Wei. Studies on the electronic structures, exchange coupling and magnetic moments of spin and orbital in the compound SmCo55. Acta Physica Sinica, 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [20] Xu Hai-Feng, Guo Ying, Li Qi-Feng, Dai Jing-Hua, Liu Shi-Lin, Ma Xing-Xiao. The spectral assignment for the A2Σ+←X2Π transition of N2O+ ions. Acta Physica Sinica, 2004, 53(4): 1027-1033. doi: 10.7498/aps.53.1027
Metrics
  • Abstract views:  6485
  • PDF Downloads:  77
  • Cited By: 0
Publishing process
  • Received Date:  05 August 2021
  • Accepted Date:  17 September 2021
  • Available Online:  13 January 2022
  • Published Online:  20 January 2022

/

返回文章
返回
Baidu
map