Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hydrogen soaking irradiation acceleration method: application to and damage mechanism analysis on 3DG111 transistors

Zhao Jin-Yu Yang Jian-Qun Dong Lei Li Xing-Ji

Citation:

Hydrogen soaking irradiation acceleration method: application to and damage mechanism analysis on 3DG111 transistors

Zhao Jin-Yu, Yang Jian-Qun, Dong Lei, Li Xing-Ji
PDF
HTML
Get Citation
  • Bipolar devices are extremely sensitive to ionization effects, and their low dose rate radiation damage is more serious than their high dose rate radiation damage, which phenomenon is especially named enhanced low dose rate sensitivity. In the actual space radiation environment, the radiation dose rate of the device is extremely low. Currently, the enhanced low dose rate sensitivity effect has become a key factor of evaluating the reliability of spacecraft and its electronic systems, due to the fact that the low dose rate irradiation test needs longer time. The method to speed up the test on the ground is one of the hottest topics in this research area. In recent years, some researches have suggested that the use of hydrogen immersion irradiation for accelerating the test can simulate low dose rate radiation damage to some extent, but the damage mechanism has not been analyzed in detail. In this paper, the mechanisms of electrical properties and deep level defects for the 3DG111 transistor by 60Co gamma ray under high and low dose rates in the cases with and without hydrogen are investigated. In order to analyze the damage mechanism of bipolar junction transistor, the excess base current and deep level transient spectrum are measured by using semiconductor parameter analyzer and deep level transient spectroscopy. The experimental results show that the current gain degradation of 3DG111 transistor is more serious under low dose rate radiation than under high dose rate radiation, at the same time, the excess base current of transistor increases significantly. This shows that in the device there appears the enhanced low dose rate sensitivity. Under both high dose rate radiation and low dose rate irradiation, the radiation damage defects are the traps for both oxide positive charge and interface state. Under the low dose rate irradiation, there are two main reasons for the increase in transistor damage. First, the oxide charge concentration increases under low dose rate irradiation, and the oxide charge and interface state energy levels move toward the middle band. Eventually, the space charge region recombination of the transistor is intensified, and thus causing the excessive base current of the transistor to increase and transistor performance to degrade. The comparison shows that the number and type of defects under the high dose rate irradiation are the same as those under the low dose rate irradiation. Based on the analysis, the hydrogen treatment can be used as an effective method of accelerating the assessment of radiation damage enhancement effect at low dose rates.
      Corresponding author: Li Xing-Ji, lxj0218@hit.edu.cn
    • Funds: Project supported by the Science Challenge Project, China (Grant No. TZ2018004) and the Foundation of Science and Technology on Analog Integrated Circuit Laboratory, China (Grant No. 6142802WD201803).
    [1]

    Bi J S, Zeng C B, Gao L C, Liu G, Luo J J, Han Z S 2014 Chin. Phys. B 23 088505Google Scholar

    [2]

    Enlow E W, Pease R L, Combs W 1991 IEEE Trans. Nucl. Sci. 38 1342Google Scholar

    [3]

    翟亚红, 李平, 张国俊, 罗玉香, 范雪, 胡滨, 李俊宏, 张健, 束平 2011 20 088501Google Scholar

    Zhai Y H, Li P, Zhang G J, Luo Y X, Fan X, Hu B, Li J H, Zhang J, Shu P 2011 Acta Phys. Sin. 20 088501Google Scholar

    [4]

    王义元, 陆妩, 任迪远, 郭旗, 余学峰, 何承发, 高博 2011 60 096104Google Scholar

    Wang Y Y, Lu W, Ren D Y, Guo Q, Yu X F, He C F, G B 2011 Acta Phys. Sin. 60 096104Google Scholar

    [5]

    姜柯, 陆妩, 胡天乐, 王信, 郭旗, 何承发, 刘默涵, 李小龙 2015 64 136103Google Scholar

    Jiang K, Lu W, Hu T L, Wang X, Guo Q, He C F, Liu M H, Li X L 2015 Acta Phys. Sin. 64 136103Google Scholar

    [6]

    Bi J S, Han Z S, Zhang X E, McCurdy M W, Reed R A, Schrimpf R D, Fleetwood D M, Alles M L, Weller R A, Linten D, Jurczak M, Fantini A 2013 IEEE Trans. Nucl. Sci. 60 4540Google Scholar

    [7]

    Turflinger T L, Campbell, A B, Schmeichel W M, Walters R J, Krieg J E, Titus J L, Reeves M, Marshall P W, Pease R L 2003 IEEE Trans. Nucl. Sci. 50 2328Google Scholar

    [8]

    Harris R D, Mcclure S S, Rax B G, Evans, R W, Jun I 2008 IEEE Trans. Nucl. Sci. 55 3088Google Scholar

    [9]

    刘敏波, 陈伟, 姚志斌, 黄绍艳, 何宝平, 盛江坤, 肖志刚, 王祖军 2014 强激光与粒子束 26 214

    Liu M B, Chen W, Yao Z B, Huang S Y, He B P, Sheng J K, Xiao Z G, Wang Z J 2014 High Power Laser and Particle Beams 26 214

    [10]

    马武英, 陆妩, 郭旗, 吴雪, 孙静, 邓伟, 王信, 吴正新 2014 原子能科学技术 48 2170Google Scholar

    Ma Y W, Lu W, Guo Q, Wu X, Sun J, Deng W, Wang X, Wu Z X 2014 Atomic Energy Science and Technology 48 2170Google Scholar

    [11]

    陆妩, 任迪远, 郑玉展, 王义元, 郭旗, 余学峰 2009 原子能科学技术 43 769

    Lu W, Ren D Y, Zheng Y Z, Wang Y Y, Guo Q, Yu X F 2009 Atomic Energy Science and Technology 43 769

    [12]

    王先明, 刘楚湘, 艾尔肯·斯迪克 2007 核电子学与探测技术 27 1139Google Scholar

    Wang X M, Liu C X, Sidike A 2007 Nuclear Electronics and Detection Technology 27 1139Google Scholar

    [13]

    Li X L, Lu W, Wang X, Yu X, Guo Q, Sun J, Liu M H, Yao S, Wei X Y, He C F 2018 Chin. Phys. B 27 036102Google Scholar

    [14]

    李小龙, 陆妩, 王信, 郭旗, 何承发, 孙静, 于新, 刘默寒, 贾金成, 姚帅, 魏昕宇 2018 67 096101Google Scholar

    Li X L, Lu W, Wang X, Guo Q, He C F, Sun J, Yu X, Liu M H, Jia J C, Yao S, Wei X Y 2018 Acta Phys. Sin. 67 096101Google Scholar

    [15]

    刘方圆 2015 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu F Y 2015 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [16]

    李兴冀, 陈朝基, 杨剑群, 刘超铭, 马国亮 2017 太赫兹科学与电子信息学报 15 690Google Scholar

    Li X J, Chen C J, Yang J Q, Liu C M, Ma G L 2017 J. Terahertz Sci. Electron. Inform. Technol. 15 690Google Scholar

    [17]

    栾晓楠 2016 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Luan X N 2016 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [18]

    Kosier S L, Schrimpf R D, Nowlin R N, Fleetwood D M, DeLaus M, Pease R L, Combs W E, Wei A 1993 IEEE Trans. Nucl. Sci. 40 1276Google Scholar

    [19]

    郑玉展, 陆妩, 任迪远, 王义元, 郭旗, 余学锋, 何承发 2009 58 5560Google Scholar

    Zheng Y Z, Lu W, Ren D Y, Wang Y Y, Guo Q, Yu X F, He C F 2009 Acta Phys. Sin. 58 5560Google Scholar

    [20]

    马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯 2014 63 116101Google Scholar

    Ma W Y, Wang Z K, Lu W, Xi S B, Guo Q, He C F, Wang X, Liu M H, Jiang K 2014 Acta Phys. Sin. 63 116101Google Scholar

    [21]

    Liu C M, Li X J, Yang J Q, Bollmann J 2014 Nucl. Instrum. Meth. Phys. Res., Sect. A 735 462Google Scholar

    [22]

    Rashkeev S N, Fleetwood D M, Schrimpf R D, Pantelides S T 2004 IEEE Trans. Nucl. Sci. 51 3158Google Scholar

    [23]

    Chen X J, Barnaby H J, Adell P, Pease R L, Vermeire B, Holbert K E 2009 IEEE Trans. Nucl. Sci. 56 3196Google Scholar

    [24]

    Fleetwood D M, Schrimpf R D, Pantelides S T, Pease R L, Dunham G W 2008 IEEE Trans. Nucl. Sci. 55 2986Google Scholar

    [25]

    姜平国, 汪正兵, 闫永播, 刘文杰 2017 66 246801Google Scholar

    Jiang P G, Wang Z B, Yan Y B, Liu W J 2017 Acta Phys. Sin. 66 246801Google Scholar

    [26]

    Mukhopadhyay S, Sushko P V, Stoneham A M, Shluger A L 2004 Phys. Rev. B 70 195203Google Scholar

    [27]

    Lu Z Y, Nicklaw C J, Fleetwood D M, Schrimpf R D, Pantelides S T 2002 Phys. Rev. Lett. 89 285505Google Scholar

    [28]

    Pease R L, Adell P C, Rax B G, Chen X J, Barnaby J H, Holbert K E 2008 IEEE Trans. Nucl. Sci. 55 3169Google Scholar

  • 图 1  开帽处理后经$\gamma $射线辐照晶体管电流增益倒数变化量与未处理直接辐照对比

    Figure 1.  Comparison of $\Delta (1/\beta )$ of $\gamma $-ray irradiated transistor after open cap treatment with untreated.

    图 2  高剂量率辐照条件下未经氢气浸泡的晶体管的Gummel曲线 (a)基极电流; (b)集电极电流

    Figure 2.  Gummel curve of a transistor that has not been treated with hydrogen at high dose rates: (a) Base current; (b) collector current.

    图 3  氢气浸泡再经$\gamma $射线辐照后晶体管电流增益倒数变化量与未经处理辐照样品对比

    Figure 3.  Comparison of $\varDelta (1/\beta )$ with/without hydrogen treated sample under $\gamma $-ray irradiated.

    图 4  高低剂量率辐照条件下3DG111晶体管过剩基极电流对比

    Figure 4.  Comparison of excess base current of 3DG111 transistors at high and low dose rates.

    图 5  氢气浸泡预处理与未经处理晶体管辐照后过剩基极电流对比

    Figure 5.  Comparison of excess base current of a transistor after irradiation with/without hydrogen-immersion pretreatment.

    图 6  氢气浸泡预处理与未经处理晶体管辐照后DLTS曲线对比

    Figure 6.  Comparison of DLTS curves of a transistor with/without hydrogen-immersion pretreatment.

    图 7  辐照中的SiO2中的空穴传输、俘获和质子释放的示意图[24]

    Figure 7.  Schematic illustration of hole transport, trapping and proton release in SiO2 irradiated[24].

    表 1  氢气浸泡预处理与未经处理晶体管辐照后缺陷参数对比

    Table 1.  Comparison of defect parameters of a transistor with/without hydrogen-immersion pretreatment.

    处理条件氧化物电荷界面态
    能级位置
    ECET/eV
    俘获截面
    $\sigma $/cm2
    缺陷浓度
    NT/cm–3
    能级位置
    ECET/ev
    俘获截面
    $\sigma $/cm2
    缺陷浓度
    NT/cm–3
    未经处理高剂量率0.0232.16 × 10–239.17 × 10120.7411.18 × 10–154.03 × 1013
    氢气浸泡高剂量率0.1527.13 × 10–182.06 × 10130.6487.40 × 10–172.41 × 1013
    未经处理低剂量率0.1527.12 × 10–182.06 × 10130.6497.42 × 10–172.42 × 1013
    DownLoad: CSV
    Baidu
  • [1]

    Bi J S, Zeng C B, Gao L C, Liu G, Luo J J, Han Z S 2014 Chin. Phys. B 23 088505Google Scholar

    [2]

    Enlow E W, Pease R L, Combs W 1991 IEEE Trans. Nucl. Sci. 38 1342Google Scholar

    [3]

    翟亚红, 李平, 张国俊, 罗玉香, 范雪, 胡滨, 李俊宏, 张健, 束平 2011 20 088501Google Scholar

    Zhai Y H, Li P, Zhang G J, Luo Y X, Fan X, Hu B, Li J H, Zhang J, Shu P 2011 Acta Phys. Sin. 20 088501Google Scholar

    [4]

    王义元, 陆妩, 任迪远, 郭旗, 余学峰, 何承发, 高博 2011 60 096104Google Scholar

    Wang Y Y, Lu W, Ren D Y, Guo Q, Yu X F, He C F, G B 2011 Acta Phys. Sin. 60 096104Google Scholar

    [5]

    姜柯, 陆妩, 胡天乐, 王信, 郭旗, 何承发, 刘默涵, 李小龙 2015 64 136103Google Scholar

    Jiang K, Lu W, Hu T L, Wang X, Guo Q, He C F, Liu M H, Li X L 2015 Acta Phys. Sin. 64 136103Google Scholar

    [6]

    Bi J S, Han Z S, Zhang X E, McCurdy M W, Reed R A, Schrimpf R D, Fleetwood D M, Alles M L, Weller R A, Linten D, Jurczak M, Fantini A 2013 IEEE Trans. Nucl. Sci. 60 4540Google Scholar

    [7]

    Turflinger T L, Campbell, A B, Schmeichel W M, Walters R J, Krieg J E, Titus J L, Reeves M, Marshall P W, Pease R L 2003 IEEE Trans. Nucl. Sci. 50 2328Google Scholar

    [8]

    Harris R D, Mcclure S S, Rax B G, Evans, R W, Jun I 2008 IEEE Trans. Nucl. Sci. 55 3088Google Scholar

    [9]

    刘敏波, 陈伟, 姚志斌, 黄绍艳, 何宝平, 盛江坤, 肖志刚, 王祖军 2014 强激光与粒子束 26 214

    Liu M B, Chen W, Yao Z B, Huang S Y, He B P, Sheng J K, Xiao Z G, Wang Z J 2014 High Power Laser and Particle Beams 26 214

    [10]

    马武英, 陆妩, 郭旗, 吴雪, 孙静, 邓伟, 王信, 吴正新 2014 原子能科学技术 48 2170Google Scholar

    Ma Y W, Lu W, Guo Q, Wu X, Sun J, Deng W, Wang X, Wu Z X 2014 Atomic Energy Science and Technology 48 2170Google Scholar

    [11]

    陆妩, 任迪远, 郑玉展, 王义元, 郭旗, 余学峰 2009 原子能科学技术 43 769

    Lu W, Ren D Y, Zheng Y Z, Wang Y Y, Guo Q, Yu X F 2009 Atomic Energy Science and Technology 43 769

    [12]

    王先明, 刘楚湘, 艾尔肯·斯迪克 2007 核电子学与探测技术 27 1139Google Scholar

    Wang X M, Liu C X, Sidike A 2007 Nuclear Electronics and Detection Technology 27 1139Google Scholar

    [13]

    Li X L, Lu W, Wang X, Yu X, Guo Q, Sun J, Liu M H, Yao S, Wei X Y, He C F 2018 Chin. Phys. B 27 036102Google Scholar

    [14]

    李小龙, 陆妩, 王信, 郭旗, 何承发, 孙静, 于新, 刘默寒, 贾金成, 姚帅, 魏昕宇 2018 67 096101Google Scholar

    Li X L, Lu W, Wang X, Guo Q, He C F, Sun J, Yu X, Liu M H, Jia J C, Yao S, Wei X Y 2018 Acta Phys. Sin. 67 096101Google Scholar

    [15]

    刘方圆 2015 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu F Y 2015 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [16]

    李兴冀, 陈朝基, 杨剑群, 刘超铭, 马国亮 2017 太赫兹科学与电子信息学报 15 690Google Scholar

    Li X J, Chen C J, Yang J Q, Liu C M, Ma G L 2017 J. Terahertz Sci. Electron. Inform. Technol. 15 690Google Scholar

    [17]

    栾晓楠 2016 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Luan X N 2016 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [18]

    Kosier S L, Schrimpf R D, Nowlin R N, Fleetwood D M, DeLaus M, Pease R L, Combs W E, Wei A 1993 IEEE Trans. Nucl. Sci. 40 1276Google Scholar

    [19]

    郑玉展, 陆妩, 任迪远, 王义元, 郭旗, 余学锋, 何承发 2009 58 5560Google Scholar

    Zheng Y Z, Lu W, Ren D Y, Wang Y Y, Guo Q, Yu X F, He C F 2009 Acta Phys. Sin. 58 5560Google Scholar

    [20]

    马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯 2014 63 116101Google Scholar

    Ma W Y, Wang Z K, Lu W, Xi S B, Guo Q, He C F, Wang X, Liu M H, Jiang K 2014 Acta Phys. Sin. 63 116101Google Scholar

    [21]

    Liu C M, Li X J, Yang J Q, Bollmann J 2014 Nucl. Instrum. Meth. Phys. Res., Sect. A 735 462Google Scholar

    [22]

    Rashkeev S N, Fleetwood D M, Schrimpf R D, Pantelides S T 2004 IEEE Trans. Nucl. Sci. 51 3158Google Scholar

    [23]

    Chen X J, Barnaby H J, Adell P, Pease R L, Vermeire B, Holbert K E 2009 IEEE Trans. Nucl. Sci. 56 3196Google Scholar

    [24]

    Fleetwood D M, Schrimpf R D, Pantelides S T, Pease R L, Dunham G W 2008 IEEE Trans. Nucl. Sci. 55 2986Google Scholar

    [25]

    姜平国, 汪正兵, 闫永播, 刘文杰 2017 66 246801Google Scholar

    Jiang P G, Wang Z B, Yan Y B, Liu W J 2017 Acta Phys. Sin. 66 246801Google Scholar

    [26]

    Mukhopadhyay S, Sushko P V, Stoneham A M, Shluger A L 2004 Phys. Rev. B 70 195203Google Scholar

    [27]

    Lu Z Y, Nicklaw C J, Fleetwood D M, Schrimpf R D, Pantelides S T 2002 Phys. Rev. Lett. 89 285505Google Scholar

    [28]

    Pease R L, Adell P C, Rax B G, Chen X J, Barnaby J H, Holbert K E 2008 IEEE Trans. Nucl. Sci. 55 3169Google Scholar

  • [1] Gou Shi-Long, Ma Wu-Ying, Yao Zhi-Bin, He Bao-Ping, Sheng Jiang-Kun, Xue Yuan-Yuan, Pan Chen. Radiation mechanism of gate-controlled lateral PNP bipolar transistors in the hydrogen environment. Acta Physica Sinica, 2021, 70(15): 156101. doi: 10.7498/aps.70.20210351
    [2] Dong Lei, Yang Jian-Qun, Zhen Zhao-Feng, Li Xing-Ji. Effects of pre-irradiated thermal treatment on ideal factor of excess base current in bipolar transistors. Acta Physica Sinica, 2020, 69(1): 018502. doi: 10.7498/aps.69.20191151
    [3] Zhou Yue, Hu Zhi-Yuan, Bi Da-Wei, Wu Ai-Min. Progress of radiation effects of silicon photonics devices. Acta Physica Sinica, 2019, 68(20): 204206. doi: 10.7498/aps.68.20190543
    [4] Yang Jian-Qun, Dong Lei, Liu Chao-Ming, Li Xing-Ji, Xu Peng-Fei. Impact of nitride passivation layer on ionizing irradiation damage on LPNP bipolar transistors. Acta Physica Sinica, 2018, 67(16): 168501. doi: 10.7498/aps.67.20172215
    [5] Jiang Ping-Guo, Wang Zheng-Bing, Yan Yong-Bo. First-principles study on adsorption mechanism of hydrogen on tungsten trioxide surface. Acta Physica Sinica, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [6] Zhou Hang, Zheng Qi-Wen, Cui Jiang-Wei, Yu Xue-Feng, Guo Qi, Ren Di-Yuan, Yu De-Zhao, Su Dan-Dan. Enhanced channel hot carrier effect of 0.13 m silicon-on-insulator N metal-oxide-semiconductor field-effect transistor induced by total ionizing dose effect. Acta Physica Sinica, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [7] Liu Yuan, Chen Hai-Bo, He Yu-Juan, Wang Xin, Yue Long, En Yun-Fei, Liu Mo-Han. Radiation effects on the low frequency noise in partially depleted silicon on insulator transistors. Acta Physica Sinica, 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [8] Li Duo-Fang, Cao Tian-Guang, Geng Jin-Peng, Zhan Yong. Damage-repair model for mutagenic effects of plant induced by ionizing radiation. Acta Physica Sinica, 2015, 64(24): 248701. doi: 10.7498/aps.64.248701
    [9] Ma Wu-Ying, Lu Wu, Guo Qi, He Cheng-Fa, Wu Xue, Wang Xin, Cong Zhong-Chao, Wang Bo, Maria. Analyses of ionization radiation damage and dose rate effect of bipolar voltage comparator. Acta Physica Sinica, 2014, 63(2): 026101. doi: 10.7498/aps.63.026101
    [10] Shi Lei, Qian Mu-Yang, Xiao Kun-Xiang, Li Ming. Simulation study on hydrogen penning source discharge at low pressure. Acta Physica Sinica, 2013, 62(17): 175205. doi: 10.7498/aps.62.175205
    [11] Li Xing-Ji, Liu Chao-Ming, Sun Zhong-Liang, Lan Mu-Jie, Xiao Li-Yi, He Shi-Yu. Radiation damage induced by various particles on CC4013 devices. Acta Physica Sinica, 2013, 62(5): 058502. doi: 10.7498/aps.62.058502
    [12] Li Xing-Ji, Lan Mu-Jie, Liu Chao-Ming, Yang Jian-Qun, Sun Zhong-Liang, Xiao Li-Yi, He Shi-Yu. The influence of bias conditions on ionizing radiation damage of NPN and PNP transistors. Acta Physica Sinica, 2013, 62(9): 098503. doi: 10.7498/aps.62.098503
    [13] Liu Hua-Min, Fan Yong-Sheng, Tian Shi-Hai, Zhou Wei, Chen Xu. Molecular dynamics simulation for the effect of hydrogen on the water of pressurized water reactors. Acta Physica Sinica, 2012, 61(6): 062801. doi: 10.7498/aps.61.062801
    [14] Ma Jing, Che Chi, Yu Si-Yuan, Tan Li-Ying, Zhou Yan-Ping, Wang Jian. -radiation damage of fiber Bragg grating and its effects on reflected spectrum characteristics. Acta Physica Sinica, 2012, 61(6): 064201. doi: 10.7498/aps.61.064201
    [15] Wang Yi-Yuan, Lu Wu, Ren Di-Yuan, Guo Qi, Yu Xue-Feng, He Cheng-Fa, Gao Bo. Degradation and dose rate effects of bipolar linearregulator on ionizing radiation. Acta Physica Sinica, 2011, 60(9): 096104. doi: 10.7498/aps.60.096104
    [16] Lan Bo, Gao Bo, Cui Jiang-Wei, Li Ming, Wang Yi-Yuan, Yu Xue-Feng, Ren Di-Yuan. Theorical model of enhanced low dose rate sensitivity observed in p-type metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2011, 60(6): 068702. doi: 10.7498/aps.60.068702
    [17] He Bao-Ping, Yao Zhi-Bin. Research on prediction model of radiation effect for complementary metal oxide semiconductor devices at low dose rate irradiation in space environment. Acta Physica Sinica, 2010, 59(3): 1985-1990. doi: 10.7498/aps.59.1985
    [18] Zheng Yu-Zhan, Lu Wu, Ren Di-Yuan, Wang Yi-Yuan, Guo Qi, Yu Xue-Feng, He Cheng-Fa. Characteristics of high- and low-dose-rate damage for domestic npn transistors of various emitter areas. Acta Physica Sinica, 2009, 58(8): 5572-5577. doi: 10.7498/aps.58.5572
    [19] Li Zhong-He, Liu Hong-Xia, Hao Yue. Mechanism of NBTI degradation in ultra deep submicron PMOSFET’s. Acta Physica Sinica, 2006, 55(2): 820-824. doi: 10.7498/aps.55.820
    [20] Chao Ming-Ju, Ding Pei, Zhang Hong-Rui, Guo Mao-Tian, Liang Er-Jun. The effect of hydrogen and nitrogen on the growth of boron carbonitride nanotubes. Acta Physica Sinica, 2004, 53(3): 936-941. doi: 10.7498/aps.53.936
Metrics
  • Abstract views:  7869
  • PDF Downloads:  59
  • Cited By: 0
Publishing process
  • Received Date:  08 November 2018
  • Accepted Date:  09 January 2019
  • Available Online:  01 March 2019
  • Published Online:  20 March 2019

/

返回文章
返回
Baidu
map