Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Damage-repair model for mutagenic effects of plant induced by ionizing radiation

Li Duo-Fang Cao Tian-Guang Geng Jin-Peng Zhan Yong

Citation:

Damage-repair model for mutagenic effects of plant induced by ionizing radiation

Li Duo-Fang, Cao Tian-Guang, Geng Jin-Peng, Zhan Yong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The plant mutation effects induced by ionizing radiation involve a rather complex process which is composed of physical, chemical, biochemical and biological stages. Nowadays, although ionizing radiation has been widely used in plant mutation breeding, the theoretical explanations for the mechanism of the ionizing radiation caused plant mutation effects are insufficient. Especially, a saddle shape relationship between the plant survival rate and radiation dose is found in the mutagenis effect of ionizing radiation on plants. The underlying mechanism of the saddle shape relationship remains unclear and challenges to all extant models.To explain this relationship, a damage-repair model for the plant mutation effects induced by ionizing radiation is proposed in the present work. Our model is based on the rate theory of ionizing radiation in which the cell damage and repair are taken into account simultaneously together with the micro-and macro-biological mutation effects of plant caused by ionizing radiation. The states of the radiated plant individuals are grouped into three categories: normal, damaged and lethal categories in our model. The evolution dynamics of the relative concentrations of the three categories are determined by a set of coupled equations which are mathematically the same as the Crow-Kimura equations in species evolution theories. With the numerical solution of our model in its steady state, the relative steady state concentration distributions of different categories of the radiated plants with increasing radiation dose are obtained. It is shown that without the plant repair effect, the relationship between the plant survival rate and radiation dose appears to be a conventional shoulder type one. With the plant repair effect, our model gives a saddle shape survival-dose relationship which has been observed commonly in the experiments on the radiated plants by ionizing radiation. To further test the model, the experimental data on the inbred lines of maizes radiated by heavy ion 7Li are used to determine the parameters of the model. It is shown that the theoretical results are basically consistent with the experimental ones. In addition, the mutation characteristic of the survival plants also appears to be a saddle effect-dose relationship, for which the theoretical model could also give a reasonable explanation. Our damage-repair model explains the saddle shape relationship between the plant survival rate and radiation dose, which indeed illuminates its power. And it provides a theoretical basis and reference for studying the biological effect mechanism of plants induced by ionizing radiation and conducting ionizing radiation plant breeding.
      Corresponding author: Zhan Yong, yongz2013@163.com
    • Funds: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. C2013202192).
    [1]

    Muller H J 1928 Proc. Natl. Acad. Sci. U.S.A. 14 714

    [2]

    Tanaka A, Shikazono N, Hase Y 2010 J. Radiat. Res. 51 223

    [3]

    Ma S, Li W J, Zhou L B, Yu L X, Dong X C 2007 J. Nucl. Agric. Sci. 21 4 378 (in Chinese) [马爽, 李文建, 周利斌, 余丽霞, 董喜存 2007 核农学报 4 378]

    [4]

    Liu L X, Guo H J, Zhao L S, Li J H, Gu J Y, Zhao S R, Wang J 2009 J. Nucl. Agric. Sci. 23 1001 (in Chinese) [刘录祥, 郭会君, 赵林姝, 李军辉, 古佳玉, 赵世荣, 王晶 2009 核农学报 23 1001]

    [5]

    Tang Z X, Liu Z F, Shao J M, Gong Y X 2005 J. Nucl. Agric. Sci. 19 312 (in Chinese) [唐掌雄, 刘志芳, 邵俊明, 龚胤昕 2005 核农学报 19 312]

    [6]

    Scaldaferro M A, Prina A R, Moscone E A, Kwasniewska J 2013 Appl. Radiat. Isotopes 79 103

    [7]

    Xia S X 1998 Radiobiology (Beijin: Military Medical Science Press) p11 (in Chinese) [夏寿萱 1998 放射生物学(北京: 军事医学科学出版社) p11]

    [8]

    Li P, Li X H, Zhang F, Qiu D L 2008 J. Nucl. Agric. Sci. 22 5 626 (in Chinese) [李鹏, 李新华, 张锋, 邱登林 2008 核农学报 5 626]

    [9]

    Geng J P, Cao T G, Li D F, An H L, Han Y R, Li J, Hu J S, Li N N, Zhan Y 2014 Chin. Phys. Lett. 31 038701

    [10]

    Luo Z M, Gou C J, Wolfram L 2003 Chin. Phys. B 12 080306

    [11]

    Dong X C, Li W J 2012 Adv. Spac. Res. 50 496

    [12]

    Mondello C, Smirnova A, Giulotto E 2010 Mutat. Res. 704 29

    [13]

    Le Cam L 1992 Math. Biosci. 112 261

    [14]

    Yang G L, Swenberg C 1991 Math. Scientist 16 46

    [15]

    Liu Z Q, Gu W B, Li W J 2012 Agr. Sci. Tech. 13 2257

    [16]

    Yang Y N, Liu C L, Wang Y K, Xue J M 2013 Mutat. Res. 751 24

    [17]

    Sato Y, Hirashi T, Hayashi Y, Kasahara M, Fukunishi N, Abe T, Kawano S 2014 Radiat. Chem. Biol. 47 300

    [18]

    Lea D E, Morrison P 1955 Phys. Today 8 14

    [19]

    Chadwick K H, Leenhouts H P 1973 Phys. Med. Biol. 18 78

    [20]

    Kellerer A M, Rossi H H 1978 Radia. Res. 75 471

    [21]

    Esnault M A, Legue F, Chenal C 2010 Environ. Exp. Bot. 68 231

    [22]

    Narendra T, Mohan B S, Mithilesh K M, Prem L B, Renu T 2001 Crit. Rev. Biochem. Mol. 36 4 337

    [23]

    Meyn R E, Withers H R 1980 Radiation Biology in Cancer Research (New York: Raven Press) p195

    [24]

    Curtis S B 1986 Radiat. Res. 106 252

    [25]

    Manabe Y, Nakamura I, Bando M 2014 J. Phys. Soc. Jpn. 83 114003

    [26]

    Manabe Y, Kento I, Bando M 2012 J. Phys. Soc. Jpn. 81 104004

    [27]

    Saakian D B, Hu C K 2004 Phys. Rev. E 69 046121

    [28]

    Dalmau J 2015 Stoch. Proc. Appl. 125 272

    [29]

    Ryuichi O. 2012 Int. J. Cancer 130 991

    [30]

    Friedrich T, Scholz U, Elsasser T, Durante M, Scholz M 2012 J. Radiat. Res. 54 1

    [31]

    Mirzaie-Joniani H, Eriksson D, Sheikholvaezin A, Johansson A, Löfroth P O, Johansson L, Stigbrand T 2002 Cancer 94 1210

    [32]

    Pathak R, Dey S K, Sarma A, Khudabukhsh A R 2007 Mutat. Res. 632 58

    [33]

    Baake E, Baake M, Wagner H 1997 Phys. Rev. E 7 83 559

    [34]

    Geng J P, Li D F, Cao T G, Wang X Z, Li J, Chen Y F, Han Y R, Hu J S, Li N N, An H L, Zhan Y, Sui L, Kong F Q, Wu Y F 2014 Res. Crop. 15 71

    [35]

    Shao C L, Yu Z L 1997 Nucl. Tech. 20 423 (in Chinese) [邵春林, 余增亮 1997 核技术 20 7 423]

    [36]

    Han R F, Wu Y J, Bian B, Wang R F 2009 Nucl. Phys. Rev. 26 352 (in Chinese) [韩荣飞, 吴跃进, 卞波, 王荣富 2009 原子核物理评论 26 352]

  • [1]

    Muller H J 1928 Proc. Natl. Acad. Sci. U.S.A. 14 714

    [2]

    Tanaka A, Shikazono N, Hase Y 2010 J. Radiat. Res. 51 223

    [3]

    Ma S, Li W J, Zhou L B, Yu L X, Dong X C 2007 J. Nucl. Agric. Sci. 21 4 378 (in Chinese) [马爽, 李文建, 周利斌, 余丽霞, 董喜存 2007 核农学报 4 378]

    [4]

    Liu L X, Guo H J, Zhao L S, Li J H, Gu J Y, Zhao S R, Wang J 2009 J. Nucl. Agric. Sci. 23 1001 (in Chinese) [刘录祥, 郭会君, 赵林姝, 李军辉, 古佳玉, 赵世荣, 王晶 2009 核农学报 23 1001]

    [5]

    Tang Z X, Liu Z F, Shao J M, Gong Y X 2005 J. Nucl. Agric. Sci. 19 312 (in Chinese) [唐掌雄, 刘志芳, 邵俊明, 龚胤昕 2005 核农学报 19 312]

    [6]

    Scaldaferro M A, Prina A R, Moscone E A, Kwasniewska J 2013 Appl. Radiat. Isotopes 79 103

    [7]

    Xia S X 1998 Radiobiology (Beijin: Military Medical Science Press) p11 (in Chinese) [夏寿萱 1998 放射生物学(北京: 军事医学科学出版社) p11]

    [8]

    Li P, Li X H, Zhang F, Qiu D L 2008 J. Nucl. Agric. Sci. 22 5 626 (in Chinese) [李鹏, 李新华, 张锋, 邱登林 2008 核农学报 5 626]

    [9]

    Geng J P, Cao T G, Li D F, An H L, Han Y R, Li J, Hu J S, Li N N, Zhan Y 2014 Chin. Phys. Lett. 31 038701

    [10]

    Luo Z M, Gou C J, Wolfram L 2003 Chin. Phys. B 12 080306

    [11]

    Dong X C, Li W J 2012 Adv. Spac. Res. 50 496

    [12]

    Mondello C, Smirnova A, Giulotto E 2010 Mutat. Res. 704 29

    [13]

    Le Cam L 1992 Math. Biosci. 112 261

    [14]

    Yang G L, Swenberg C 1991 Math. Scientist 16 46

    [15]

    Liu Z Q, Gu W B, Li W J 2012 Agr. Sci. Tech. 13 2257

    [16]

    Yang Y N, Liu C L, Wang Y K, Xue J M 2013 Mutat. Res. 751 24

    [17]

    Sato Y, Hirashi T, Hayashi Y, Kasahara M, Fukunishi N, Abe T, Kawano S 2014 Radiat. Chem. Biol. 47 300

    [18]

    Lea D E, Morrison P 1955 Phys. Today 8 14

    [19]

    Chadwick K H, Leenhouts H P 1973 Phys. Med. Biol. 18 78

    [20]

    Kellerer A M, Rossi H H 1978 Radia. Res. 75 471

    [21]

    Esnault M A, Legue F, Chenal C 2010 Environ. Exp. Bot. 68 231

    [22]

    Narendra T, Mohan B S, Mithilesh K M, Prem L B, Renu T 2001 Crit. Rev. Biochem. Mol. 36 4 337

    [23]

    Meyn R E, Withers H R 1980 Radiation Biology in Cancer Research (New York: Raven Press) p195

    [24]

    Curtis S B 1986 Radiat. Res. 106 252

    [25]

    Manabe Y, Nakamura I, Bando M 2014 J. Phys. Soc. Jpn. 83 114003

    [26]

    Manabe Y, Kento I, Bando M 2012 J. Phys. Soc. Jpn. 81 104004

    [27]

    Saakian D B, Hu C K 2004 Phys. Rev. E 69 046121

    [28]

    Dalmau J 2015 Stoch. Proc. Appl. 125 272

    [29]

    Ryuichi O. 2012 Int. J. Cancer 130 991

    [30]

    Friedrich T, Scholz U, Elsasser T, Durante M, Scholz M 2012 J. Radiat. Res. 54 1

    [31]

    Mirzaie-Joniani H, Eriksson D, Sheikholvaezin A, Johansson A, Löfroth P O, Johansson L, Stigbrand T 2002 Cancer 94 1210

    [32]

    Pathak R, Dey S K, Sarma A, Khudabukhsh A R 2007 Mutat. Res. 632 58

    [33]

    Baake E, Baake M, Wagner H 1997 Phys. Rev. E 7 83 559

    [34]

    Geng J P, Li D F, Cao T G, Wang X Z, Li J, Chen Y F, Han Y R, Hu J S, Li N N, An H L, Zhan Y, Sui L, Kong F Q, Wu Y F 2014 Res. Crop. 15 71

    [35]

    Shao C L, Yu Z L 1997 Nucl. Tech. 20 423 (in Chinese) [邵春林, 余增亮 1997 核技术 20 7 423]

    [36]

    Han R F, Wu Y J, Bian B, Wang R F 2009 Nucl. Phys. Rev. 26 352 (in Chinese) [韩荣飞, 吴跃进, 卞波, 王荣富 2009 原子核物理评论 26 352]

  • [1] Zhang Hai-Song, Lu Mao-Cong, Li Zhi-Gang. An expansion effect based pseudo-boiling critical point model for supercritical CO2. Acta Physica Sinica, 2024, 73(18): 184402. doi: 10.7498/aps.73.20240293
    [2] Zhang Shu-Hao, Yuan Zhang-Yi-An, Qiao Ming, Zhang Bo. Simulation study on radiation hardness for total ionizing dose effect of ultra-thin shielding layer 300 V SOI LDMOS. Acta Physica Sinica, 2022, 71(10): 107301. doi: 10.7498/aps.71.20220041
    [3] Zhi Chang-Hong, Xu Shuang-Dong, Han Pan-Pan, Chen Ke, You Yun-Xiang. Applicability of high-order unidirectional internal solitary wave theoretical model. Acta Physica Sinica, 2022, 71(17): 174701. doi: 10.7498/aps.71.20220411
    [4] Dong Lei, Yang Jian-Qun, Zhen Zhao-Feng, Li Xing-Ji. Effects of pre-irradiated thermal treatment on ideal factor of excess base current in bipolar transistors. Acta Physica Sinica, 2020, 69(1): 018502. doi: 10.7498/aps.69.20191151
    [5] Zhao Jin-Yu, Yang Jian-Qun, Dong Lei, Li Xing-Ji. Hydrogen soaking irradiation acceleration method: application to and damage mechanism analysis on 3DG111 transistors. Acta Physica Sinica, 2019, 68(6): 068501. doi: 10.7498/aps.68.20181992
    [6] Zhou Yue, Hu Zhi-Yuan, Bi Da-Wei, Wu Ai-Min. Progress of radiation effects of silicon photonics devices. Acta Physica Sinica, 2019, 68(20): 204206. doi: 10.7498/aps.68.20190543
    [7] Yang Jian-Qun, Dong Lei, Liu Chao-Ming, Li Xing-Ji, Xu Peng-Fei. Impact of nitride passivation layer on ionizing irradiation damage on LPNP bipolar transistors. Acta Physica Sinica, 2018, 67(16): 168501. doi: 10.7498/aps.67.20172215
    [8] Zhou Hang, Zheng Qi-Wen, Cui Jiang-Wei, Yu Xue-Feng, Guo Qi, Ren Di-Yuan, Yu De-Zhao, Su Dan-Dan. Enhanced channel hot carrier effect of 0.13 m silicon-on-insulator N metal-oxide-semiconductor field-effect transistor induced by total ionizing dose effect. Acta Physica Sinica, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [9] Zhou Hang, Cui Jiang-Wei, Zheng Qi-Wen, Guo Qi, Ren Di-Yuan, Yu Xue-Feng. Reliability of partially-depleted silicon-on-insulator n-channel metal-oxide-semiconductor field-effect transistor under the ionizing radiation environment. Acta Physica Sinica, 2015, 64(8): 086101. doi: 10.7498/aps.64.086101
    [10] Liu Yuan, Chen Hai-Bo, He Yu-Juan, Wang Xin, Yue Long, En Yun-Fei, Liu Mo-Han. Radiation effects on the low frequency noise in partially depleted silicon on insulator transistors. Acta Physica Sinica, 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [11] Ma Wu-Ying, Lu Wu, Guo Qi, He Cheng-Fa, Wu Xue, Wang Xin, Cong Zhong-Chao, Wang Bo, Maria. Analyses of ionization radiation damage and dose rate effect of bipolar voltage comparator. Acta Physica Sinica, 2014, 63(2): 026101. doi: 10.7498/aps.63.026101
    [12] Li Xing-Ji, Liu Chao-Ming, Sun Zhong-Liang, Lan Mu-Jie, Xiao Li-Yi, He Shi-Yu. Radiation damage induced by various particles on CC4013 devices. Acta Physica Sinica, 2013, 62(5): 058502. doi: 10.7498/aps.62.058502
    [13] Li Xing-Ji, Lan Mu-Jie, Liu Chao-Ming, Yang Jian-Qun, Sun Zhong-Liang, Xiao Li-Yi, He Shi-Yu. The influence of bias conditions on ionizing radiation damage of NPN and PNP transistors. Acta Physica Sinica, 2013, 62(9): 098503. doi: 10.7498/aps.62.098503
    [14] Gao Song, Li Wei, You Yun-Xiang, Hu Tian-Qun. Numerical investigation on the gas-liquid severe slugging in a pipeline-riser system. Acta Physica Sinica, 2012, 61(10): 104701. doi: 10.7498/aps.61.104701
    [15] Ma Jing, Che Chi, Yu Si-Yuan, Tan Li-Ying, Zhou Yan-Ping, Wang Jian. -radiation damage of fiber Bragg grating and its effects on reflected spectrum characteristics. Acta Physica Sinica, 2012, 61(6): 064201. doi: 10.7498/aps.61.064201
    [16] Wang Yi-Yuan, Lu Wu, Ren Di-Yuan, Guo Qi, Yu Xue-Feng, He Cheng-Fa, Gao Bo. Degradation and dose rate effects of bipolar linearregulator on ionizing radiation. Acta Physica Sinica, 2011, 60(9): 096104. doi: 10.7498/aps.60.096104
    [17] He Bao-Ping, Yao Zhi-Bin. Research on prediction model of radiation effect for complementary metal oxide semiconductor devices at low dose rate irradiation in space environment. Acta Physica Sinica, 2010, 59(3): 1985-1990. doi: 10.7498/aps.59.1985
    [18] Chen Wei-Hua, Du Lei, Zhuang Yi-Qi, Bao Jun-Lin, He Liang, Zhang Tian-Fu, Zhang Xue. A model considering the ionizing radiation effects in MOS structure. Acta Physica Sinica, 2009, 58(6): 4090-4095. doi: 10.7498/aps.58.4090
    [19] Fang Zhen-Qian, Hu Ming, Zhang Wei, Zhang Xu-Rui. Micro-Raman spectroscopic investigation of the thermal conductivity of oxidized meso-porous silicon. Acta Physica Sinica, 2008, 57(1): 103-110. doi: 10.7498/aps.57.103
    [20] WANG DE-ZHEN, MA TENG-CAI. THEORETICAL MODEL FOR THE HEAVY PARTICLE TRANSPORT IN A CATHODE SHEATH. Acta Physica Sinica, 2000, 49(12): 2404-2407. doi: 10.7498/aps.49.2404
Metrics
  • Abstract views:  6226
  • PDF Downloads:  128
  • Cited By: 0
Publishing process
  • Received Date:  16 July 2015
  • Accepted Date:  02 September 2015
  • Published Online:  05 December 2015

/

返回文章
返回
Baidu
map