Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic structures of stable Cu-centered Cu-Zr icosahedral clusters studied by density functional theory

Jiang Yuan-Qi Peng Ping

Citation:

Electronic structures of stable Cu-centered Cu-Zr icosahedral clusters studied by density functional theory

Jiang Yuan-Qi, Peng Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Cu-Zr alloy system,as a representative of transition metal-transition metal (TM-TM) metallic glass (MG),has attracted considerable attention due to its high glass-forming ability in a wide range of compositions.Many researchers have realized that the GFA of Cu-Zr alloy is intimately related to Cu-centered Cu-Zr icosahedral atomic cluster in supercooled liquid and rapidly solidified into amorphous solid.And lots of molecular dynamics simulations have shown that Cu-centered Cu-Zr icosahedral clusters not only affect the thermo-dynamical properties of metal or alloy melts,but also exhibit excellent structural stability and configuration heredity ability during the rapid solidification.Hereof a model of the metallic glass structure based on like icosahedron has become widely accepted,which plays an important role in the glass transition and its strong kinetic constraint on nucleation.However,though more and more standard and distorted Cu-Zr icosahedral clusters have been found and reported in Cu-Zr metallic glass,the fundamental understanding of these Cu-Zr icosahedral clusters of MGs is still lacking.More essential properties of Cu-centered Cu-Zr icosahedral cluster, especially on the electronic structure are still unclear.Based on this,as a further step towards in depth understanding the electronic structures of those icosahedral clusters,we will investigate the electronic structures of the stable Cucentered CunZr13-n (n=6,7,8,9) icosahedral clusters in this work,and consider all the possible atomic configurations for given chemical composition in view of originate in theory And a DMol3 molecular orbital package based on density functional theory (DFT) is adopted to calculate the energetics and electronic structures of Cu-centered Cu-Zr icosahedral clusters.During optimization and total energy calculation,electronic exchange-correlation energy functions in reciprocal space with the Perdew-Burke-Emzerhof type under general gradient approximate are used.A double-numerical basis set together with d-polarization functions (DNP) is chosen to describe the electronic wave functions of Cu and Zr atoms. And only core electrons described by the DFT Semi-core Pseudopots are calculated.All atomic positions in Cu-centered CunZr13-n (n=6,7,8,9) icosahedral clusters are relaxed by geometry optimization under a root mean square (RMS) force of 0.002 Ha/ and RMS displacement of 0.005 .The calculations of total energy and electronic structure are followed by the geometry optimization with self-consistent field tolerance of 110-5 Ha.It is found that homogeneous atoms in the shell of clusters with low binding energy prefer to bond to each other.In this case,the results of electronic structures reveal this segregation at low energy and stable configurations can be attributed to their low N (EF) at EF to some extent.A further analysis of Mulliken'population shows that these 4s and 4p of shell Cu atoms are all donees in the formation of icosahedral cluster,different from the donations of 3d and 4s of core Cu atoms and 5s of shell Zr atoms, and this charge transfer tendency does not change with order parameter nor chemical composition of Cu-centered Cu-Zr icosahedral cluster.In addition,calculating the infrared vibration spectrum of Cu-Zr icosahedral cluster is a new idea for accurately characterizing the cluster structure.
      Corresponding author: Jiang Yuan-Qi, yuanqi325@163.com
    • Funds: Project supported by the Jiangxi Provincial Natural Science Foundation of China (Grant No. 20171BAB216001), the Scientific Research Project of Jiangxi Provincial Education Department, China (Grant No. GJJ161242), the Start-up Foundation of Doctor Scientific Research Projects of Nanchang Normal University, China (Grant No. NSBSJJ2015034), and the National Natural Science Foundation of China (Grant No. 51071065).
    [1]

    Klement W, Wiliens R H, Duwez P 1960 Nature 187 870

    [2]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [3]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [4]

    Jiang Y Q, Peng P, Wen D D, Han S C, Hou Z Y 2015 Comput. Mater. Sci. 99 156

    [5]

    Li M Z 2017 Acta Phys. Sin. 66 176107 (in Chinese) [李茂枝 2017 66 176107]

    [6]

    Jiang Y Q, Wen D D, Peng P 2017 J. Molec. Liquids 230 271

    [7]

    Hirata A, Kang L J, Fujita T, Klumov B, Matsue K, Kotani M, Yavari A R, Chen M W 2013 Science 341 376

    [8]

    Yang L, Guo G Q, Chen L Y, Huang C L, Ge T, Chen D, Liaw P K, Saksl K, Ren Y, Zeng Q S, LaQua B, Chen F G, Jiang J Z 2012 Phys. Rev. Lett. 109 105502

    [9]

    Shen Y T, Kim T H, Gangopadhyay A K, Kelton K F 2009 Phys. Rev. Lett. 102 057801

    [10]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [11]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S 2013 Acta Phys. Sin. 62 196101 (in Chinese) [文大东, 彭平, 蒋元祺, 田泽安, 刘让苏 2013 62 196101]

    [12]

    Hwang J, Melgarejo Z H, Kalay Y E, Kalay I, Kramer M J, Stone D S, Voyles P M 2012 Phys. Rev. Lett. 108 195505

    [13]

    Lee M, Lee M, Lee C, Lee K, Ma E, Lee J 2011 Acta Mater. 59 159

    [14]

    Deng Y H, Wen D D, Peng C, Wei Y D, Zhao R, Peng P 2016 Acta Phys. Sin. 65 066401 (in Chinese) [邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平 2016 65 066401]

    [15]

    Leocmach M, Tanaka H 2012 Nat. Commun. 3 974

    [16]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S, Dong K J 2014 J. Non-Cryst. Solids 388 75

    [17]

    Liu A C Y, Neish M J, Stokol G, Buckley G A, Smillie L A, de Jonge M D, Ott R T, Kramer M J, Bourgeois L 2013 Phys. Rev. Lett. 110 205505

    [18]

    Lekka C E, Evangelakis G A 2009 Scripta Mater. 61 974

    [19]

    Bokas G B, Lagogianni A E, Almyras G A, Lekka Ch E, Papageorgiou D G, Evangelakis G A 2013 Intermetallics 43 138

    [20]

    Sha Z D, Pan H, Pei Q X, Zhang Y W 2012 Intermetallics 26 8

    [21]

    Jiang Y Q 2015 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese) [蒋元祺 2015 博士学位论文 (长沙: 湖南大学)]

    [22]

    Sha Z D, Pei Q X 2015 J. Alloys Compd. 619 16

    [23]

    Wang D, Zhao S J, Liu L M 2015 J. Phys. Chem. A 119 806

    [24]

    Delley B 2000 J. Chem. Phys. 113 7756

    [25]

    Delley B 1990 J. Chem. Phys. 92 508

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [27]

    Nagel S R, Tauc J 1975 Phys. Rev. Lett. 35 380

    [28]

    Moruzzi V L, Oelhafen P, Williams A R 1983 Phys. Rev. B 27 7194

    [29]

    Goldberg A, Halls M D, Kung P, Liang J J 2009 J. Phys. B: Atomic, Molecular and Optical Physics 42 125103

    [30]

    Mulliken R S 1955 J. Chem. Phys. 23 1833

    [31]

    Mulliken R S 1955 J. Chem. Phys. 23 1841

    [32]

    Mulliken R S 1962 J. Chem. Phys. 36 3428

    [33]

    Peng L, Peng P, Wen D D, Liu Y G, Wei H, Sun X F, Hu Z Q 2011 Modell. Simul. Mater. Sci. Eng. 19 065002

    [34]

    Segall M D, Pickard C, Shah J R, Payne M C 2010 Mol. Phys. 89 571

    [35]

    Ohmura S, Shimojo F 2010 Phys. Rev. B. 81 014208

    [36]

    Segall M D, Shah R, Pickard C J, Payne M C 1996 Phys. Rev. B 54 16317

    [37]

    Yang L, Ge T, Guo G Q, Huang C L, Meng X F, Wei S H, Chen D, Chen L Y 2013 Intermetallics 34 106

    [38]

    Zhao L Z, Ma C L, Fu M W, Zeng X R 2012 Chem.Phys. Lett. 549 44

  • [1]

    Klement W, Wiliens R H, Duwez P 1960 Nature 187 870

    [2]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [3]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [4]

    Jiang Y Q, Peng P, Wen D D, Han S C, Hou Z Y 2015 Comput. Mater. Sci. 99 156

    [5]

    Li M Z 2017 Acta Phys. Sin. 66 176107 (in Chinese) [李茂枝 2017 66 176107]

    [6]

    Jiang Y Q, Wen D D, Peng P 2017 J. Molec. Liquids 230 271

    [7]

    Hirata A, Kang L J, Fujita T, Klumov B, Matsue K, Kotani M, Yavari A R, Chen M W 2013 Science 341 376

    [8]

    Yang L, Guo G Q, Chen L Y, Huang C L, Ge T, Chen D, Liaw P K, Saksl K, Ren Y, Zeng Q S, LaQua B, Chen F G, Jiang J Z 2012 Phys. Rev. Lett. 109 105502

    [9]

    Shen Y T, Kim T H, Gangopadhyay A K, Kelton K F 2009 Phys. Rev. Lett. 102 057801

    [10]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [11]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S 2013 Acta Phys. Sin. 62 196101 (in Chinese) [文大东, 彭平, 蒋元祺, 田泽安, 刘让苏 2013 62 196101]

    [12]

    Hwang J, Melgarejo Z H, Kalay Y E, Kalay I, Kramer M J, Stone D S, Voyles P M 2012 Phys. Rev. Lett. 108 195505

    [13]

    Lee M, Lee M, Lee C, Lee K, Ma E, Lee J 2011 Acta Mater. 59 159

    [14]

    Deng Y H, Wen D D, Peng C, Wei Y D, Zhao R, Peng P 2016 Acta Phys. Sin. 65 066401 (in Chinese) [邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平 2016 65 066401]

    [15]

    Leocmach M, Tanaka H 2012 Nat. Commun. 3 974

    [16]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S, Dong K J 2014 J. Non-Cryst. Solids 388 75

    [17]

    Liu A C Y, Neish M J, Stokol G, Buckley G A, Smillie L A, de Jonge M D, Ott R T, Kramer M J, Bourgeois L 2013 Phys. Rev. Lett. 110 205505

    [18]

    Lekka C E, Evangelakis G A 2009 Scripta Mater. 61 974

    [19]

    Bokas G B, Lagogianni A E, Almyras G A, Lekka Ch E, Papageorgiou D G, Evangelakis G A 2013 Intermetallics 43 138

    [20]

    Sha Z D, Pan H, Pei Q X, Zhang Y W 2012 Intermetallics 26 8

    [21]

    Jiang Y Q 2015 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese) [蒋元祺 2015 博士学位论文 (长沙: 湖南大学)]

    [22]

    Sha Z D, Pei Q X 2015 J. Alloys Compd. 619 16

    [23]

    Wang D, Zhao S J, Liu L M 2015 J. Phys. Chem. A 119 806

    [24]

    Delley B 2000 J. Chem. Phys. 113 7756

    [25]

    Delley B 1990 J. Chem. Phys. 92 508

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [27]

    Nagel S R, Tauc J 1975 Phys. Rev. Lett. 35 380

    [28]

    Moruzzi V L, Oelhafen P, Williams A R 1983 Phys. Rev. B 27 7194

    [29]

    Goldberg A, Halls M D, Kung P, Liang J J 2009 J. Phys. B: Atomic, Molecular and Optical Physics 42 125103

    [30]

    Mulliken R S 1955 J. Chem. Phys. 23 1833

    [31]

    Mulliken R S 1955 J. Chem. Phys. 23 1841

    [32]

    Mulliken R S 1962 J. Chem. Phys. 36 3428

    [33]

    Peng L, Peng P, Wen D D, Liu Y G, Wei H, Sun X F, Hu Z Q 2011 Modell. Simul. Mater. Sci. Eng. 19 065002

    [34]

    Segall M D, Pickard C, Shah J R, Payne M C 2010 Mol. Phys. 89 571

    [35]

    Ohmura S, Shimojo F 2010 Phys. Rev. B. 81 014208

    [36]

    Segall M D, Shah R, Pickard C J, Payne M C 1996 Phys. Rev. B 54 16317

    [37]

    Yang L, Ge T, Guo G Q, Huang C L, Meng X F, Wei S H, Chen D, Chen L Y 2013 Intermetallics 34 106

    [38]

    Zhao L Z, Ma C L, Fu M W, Zeng X R 2012 Chem.Phys. Lett. 549 44

  • [1] Zhang Jian-Wei, Niu Ying, Yan Run-Qi, Zhang Rong-Qi, Cao Meng, Li Yong-Dong, Liu Chun-Liang, Zhang Jia-Wei. Analysis of effect of bulk vacancy defect on secondary electron emission characteristics of Al2O3. Acta Physica Sinica, 2024, 73(15): 157902. doi: 10.7498/aps.73.20240577
    [2] Cui Yang, Li Jing, Zhang Lin. Electronic structure of graphene nanoribbons under external electric field by density functional tight binding. Acta Physica Sinica, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [3] Li Ya-Sha, Sun Lin-Xiang, Zhou Xiao, Chen Kai, Wang Hui-Yao. Structure and excitation characteristics of C5F10O under external electric field based on density functional theory. Acta Physica Sinica, 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [4] Wang Guan-Shi,  Lin Yan-Ming,  Zhao Ya-Li,  Jiang Zhen-Yi,  Zhang Xiao-Dong. Electronic and optical performances of (Cu, N) codoped TiO2/MoS2 heterostructure photocatalyst: Hybrid DFT (HSE06) study. Acta Physica Sinica, 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [5] Li Ya-Sha, Xie Yun-Long, Huang Tai-Huan, Xu Cheng, Liu Guo-Cheng. Molecular structure and properties of salt cross-linked polyethylene under external electric field based on density functional theory. Acta Physica Sinica, 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [6] Wu Hong, Li Feng. Mechanisms on the GeH/ interactions in germanene/germanane bilayer for tuning band structures. Acta Physica Sinica, 2016, 65(9): 096801. doi: 10.7498/aps.65.096801
    [7] Li Tao, Tang Yan-Lin, Ling Zhi-Gang, Li Yu-Peng, Long Zhen-Wen. Influence of external electric field on the molecular structure and electronic spectrum of paranitrochlorobenzene. Acta Physica Sinica, 2013, 62(10): 103103. doi: 10.7498/aps.62.103103
    [8] Sun Jian-Ping, Miao Ying-Meng, Cao Xiang-Chun. Density functional theory studies of O2 and CO adsorption on the graphene doped with Pd. Acta Physica Sinica, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [9] Xu Jin-Rong, Wang Ying, Zhu Xing-Feng, Li Ping, Zhang Li. First-principles study of N-doped and N-V co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(20): 207103. doi: 10.7498/aps.61.207103
    [10] Song Jian, Li Feng, Deng Kai-Ming, Xiao Chuan-Yun, Kan Er-Jun, Lu Rui-Feng, Wu Hai-Ping. Density functional study on the stability and electronic structure of single layer Si6H4Ph2. Acta Physica Sinica, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [11] Chen Liang, Xu Can, Zhang Xiao-Fang. Electronic properties of MgO nanotube clusters studied with density functional theory. Acta Physica Sinica, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [12] Qi Kai-Tian, Yang Chuan-Lu, Li Bing, Zhang Yan, Sheng Yong. Density functional theory study on TinLa(n=1—7) clusters. Acta Physica Sinica, 2009, 58(10): 6956-6961. doi: 10.7498/aps.58.6956
    [13] Tang Chun-Mei, Chen Xuan, Deng Kai-Ming, Hu Feng-Lan, Huang De-Cai, Xia Hai-Yan. The evolution of the structure and electronic properties of the fullerene derivatives C60(CF3)n(n=2, 4, 6, 10): A density functional calculation. Acta Physica Sinica, 2009, 58(4): 2675-2679. doi: 10.7498/aps.58.2675
    [14] Yang Jian, Wang Ni-Ying, Zhu Dong-Jiu, Chen Xuan, Deng Kai-Ming, Xiao Chuan-Yun. Density functional calculation of the geometric and magnetic properties of MPb10(M=Ti,V,Cr,Cu,Pd) clusters. Acta Physica Sinica, 2009, 58(5): 3112-3117. doi: 10.7498/aps.58.3112
    [15] Cao Qing-Song, Deng Kai-Ming, Chen Xuan, Tang Chun-Mei, Huang De-Cai. Density functional study on the geometric and electronic properties of MC20F20 (M=Li, Na, Be, Mg). Acta Physica Sinica, 2009, 58(3): 1863-1869. doi: 10.7498/aps.58.1863
    [16] Bai Yu-Jie, Fu Shi-You, Deng Kai-Ming, Tang Chun-Mei, Chen Xuan, Tan Wei-Shi, Liu Yu-Zhen, Huang De-Cai. Density functional calculations on the geometric and electronic structures of the endohedral fullerene H2@C60 and its dimmer. Acta Physica Sinica, 2008, 57(6): 3684-3689. doi: 10.7498/aps.57.3684
    [17] Jiang Yan-Ling, Fu Shi-You, Deng Kai-Ming, Tang Chun-Mei, Tan Wei-Shi, Huang De-Cai, Liu Yu-Zhen, Wu Hai-Ping. Density functional study on the structural and electronic properties of fullerene-barbituric acid and its dimmer. Acta Physica Sinica, 2008, 57(6): 3690-3697. doi: 10.7498/aps.57.3690
    [18] Chen Zhong-Jun, Xiao Hai-Yan, Zu Xiao-Tao. Density functional theory investigation on structural properties of MgS crystal. Acta Physica Sinica, 2005, 54(11): 5301-5307. doi: 10.7498/aps.54.5301
    [19] Yao Ming-Zhen, Liang Ling, Gu Mu, Duan Yong, Ma Xiao-Hui. . Acta Physica Sinica, 2002, 51(1): 125-128. doi: 10.7498/aps.51.125
    [20] TONG HONG-YONG, GU MU, TANG XUE-FENG, LIANG LING, YAO MING-ZHEN. ELECTRONIC STRUCTURES OF PbWO4 CRYSTAL CALCULATED IN TERMS OF DENSITY FUNCTIONAL THEORY. Acta Physica Sinica, 2000, 49(8): 1545-1549. doi: 10.7498/aps.49.1545
Metrics
  • Abstract views:  7599
  • PDF Downloads:  193
  • Cited By: 0
Publishing process
  • Received Date:  06 February 2018
  • Accepted Date:  19 April 2018
  • Published Online:  05 July 2018

/

返回文章
返回
Baidu
map