Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multiphoton ionization dissociation dynamics of iodoethane studied with velocity map imaging technique

Yan Yi-Hui Liu Yu-Zhu Ding Peng-Fei Yin Wen-Yi

Citation:

Multiphoton ionization dissociation dynamics of iodoethane studied with velocity map imaging technique

Yan Yi-Hui, Liu Yu-Zhu, Ding Peng-Fei, Yin Wen-Yi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Halogenated alkanes destroy the ozone layer, and iodoethane is one of the important representative halogenated alkanes. Time-of-flight mass spectrometry and velocity map imaging technique are used for investigating the photoionization dissociation dynamics of iodoethane, induced by 800 nm femtosecond laser. The dissociation mechanisms of iodoethane are obtained and discussed by analyzing the velocity distributions and angular distributions of the fragment ions generated in the dissociation. The measurements by time-of-flight mass spectrometry show that iodoethane cations generates C2H5+, I+, CH2I+, C2H2+, C2H3+ and C2H4+. The fragments related to CI bond fragmentation are C2H5+ ions and I+ ions, and the dissociation mechanisms are C2H5I+ C2H5++I and C2H5I+ C2H5+I+ respectively. Comparison between the configurations before and after ionization shows that the CI bond length is 0.2220 nm before ionization and turns longer and becomes 0.2329 nm after ionization. This indicates that the CI bond becomes more unstable after ionization and is more prone to dissociation. Moreover, the velocity map images of C2H5+ and I+ ions are acquired, from which the speed and angular distribution of C2H5+ and I+ are obtained. The analysis of speed distribution of the fragment ions shows that there are two channels, i.e. high energy channel and low energy channel in the dissociation process for producing C2H5+ and I+ ion. The difference between the ratios of the high energy channel and the low energy channel is small, indicating that the high energy channel and the low energy channel of the two dissociation processes are similar. According to the further analysis of the angular distribution of the fragment ions, it is found that the anisotropy parameter of C2H5+ is close to 0 (isotropic), the production channel of which may correspond to the slow vibration predissociation process. The anisotropy parameters of I+ ions are higher, which may be due to the rapid dissociation process on the repulsive potential energy surface. In addition, the density functional theory is used to calculate the configuration change of the iodoethane molecule before and after ionization, the energy level and oscillator strength for the ionic state in order to obtain more insights into the photodissociation dynamics.
      Corresponding author: Liu Yu-Zhu, yuzhu.liu@gmail.com
    • Funds: Project supported by the National Key Research and Development Plan of China (Grant No. 2017YFC0212700), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province of China (Grant No. 18KJA140002), and the State Key Laboratory for Artificial Microstructure and Mesoscopic Physics of Pecking University, China.
    [1]

    Molina M J, Rowland F S 1974 Nature 249 810

    [2]

    Anderson J G, Toohey D W, Brune W H 1991 Science 251 39

    [3]

    Foster K L, Plastridge R A, Bottenheim J W, Shepso P B, Finlayson-Pitts B J, Spicer C W 2001 Science 291 471

    [4]

    Wu G, Jiang B, Ran Q, Zhang J, Harich S A, Yang X 2004 J. Chem. Phys. 120 2193

    [5]

    Baklanov A V, Aldener M, Lindgren B, Sassenberg U 2000 Chem. Phys. Lett. 325 399

    [6]

    Nijamudheen A, Datta A 2013 J. Phys. Chem. C 117 41

    [7]

    Xu Y Q, Qiu X J, Abulimiti B, Wang Y M, Tang Y, Zhang B 2012 Chem. Phys. Lett. 554 53

    [8]

    Tang Y, Lee W B, Hu Z F, Zhang B, Lin K C 2007 J. Chem. Phys. 126 064302

    [9]

    Schuttig H, Grotemeyer J 2011 Eur. J. Mass. Spectrom. 17 5

    [10]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [11]

    Parker D H, Eppink A T J B 1997 J. Chem. Phys. 107 2357

    [12]

    Liu Y Z, Gerber T, Knopp G 2014 Acta Phys. Sin. 63 244208 (in Chinese)[刘玉柱, Gerber T, Knopp G 2014 63 244208]

    [13]

    Liu Y Z, Xiao S R, Zhang C Y, Zheng G G, Chen Y Y 2012 Acta Phys. Sin. 61 193301 (in Chinese)[刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云 2012 61 193301]

    [14]

    Frisch M J, Trucks G W, Schlegel H B, et al 2009 Gaussian 09 Revision E.01 Gaussian, Inc., Wallingford CT

    [15]

    Knoblauch N, Strobel A, Fischer I, Bondybey V E 1995 J. Chem. Phys. 103 5417

    [16]

    Lossing F P, Semeluk G P 1970 Can. J. Chem. 48 955

    [17]

    de Leeuw D M, Mooyman R, de Lange C A 1978 Chem. Phys. Lett. 54 231

    [18]

    Dribinski V, Ossadtchi A, Mandelshtam V A, Reisler H 2002 Rev. Sci. Instrum. 73 2634

    [19]

    Zare R N 1972 Mol. Photochem. 4 1

    [20]

    Goss S P, McGilvery D C, Morrison J D, Smith D L 1981 J. Chem. Phys. 75 1820

  • [1]

    Molina M J, Rowland F S 1974 Nature 249 810

    [2]

    Anderson J G, Toohey D W, Brune W H 1991 Science 251 39

    [3]

    Foster K L, Plastridge R A, Bottenheim J W, Shepso P B, Finlayson-Pitts B J, Spicer C W 2001 Science 291 471

    [4]

    Wu G, Jiang B, Ran Q, Zhang J, Harich S A, Yang X 2004 J. Chem. Phys. 120 2193

    [5]

    Baklanov A V, Aldener M, Lindgren B, Sassenberg U 2000 Chem. Phys. Lett. 325 399

    [6]

    Nijamudheen A, Datta A 2013 J. Phys. Chem. C 117 41

    [7]

    Xu Y Q, Qiu X J, Abulimiti B, Wang Y M, Tang Y, Zhang B 2012 Chem. Phys. Lett. 554 53

    [8]

    Tang Y, Lee W B, Hu Z F, Zhang B, Lin K C 2007 J. Chem. Phys. 126 064302

    [9]

    Schuttig H, Grotemeyer J 2011 Eur. J. Mass. Spectrom. 17 5

    [10]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [11]

    Parker D H, Eppink A T J B 1997 J. Chem. Phys. 107 2357

    [12]

    Liu Y Z, Gerber T, Knopp G 2014 Acta Phys. Sin. 63 244208 (in Chinese)[刘玉柱, Gerber T, Knopp G 2014 63 244208]

    [13]

    Liu Y Z, Xiao S R, Zhang C Y, Zheng G G, Chen Y Y 2012 Acta Phys. Sin. 61 193301 (in Chinese)[刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云 2012 61 193301]

    [14]

    Frisch M J, Trucks G W, Schlegel H B, et al 2009 Gaussian 09 Revision E.01 Gaussian, Inc., Wallingford CT

    [15]

    Knoblauch N, Strobel A, Fischer I, Bondybey V E 1995 J. Chem. Phys. 103 5417

    [16]

    Lossing F P, Semeluk G P 1970 Can. J. Chem. 48 955

    [17]

    de Leeuw D M, Mooyman R, de Lange C A 1978 Chem. Phys. Lett. 54 231

    [18]

    Dribinski V, Ossadtchi A, Mandelshtam V A, Reisler H 2002 Rev. Sci. Instrum. 73 2634

    [19]

    Zare R N 1972 Mol. Photochem. 4 1

    [20]

    Goss S P, McGilvery D C, Morrison J D, Smith D L 1981 J. Chem. Phys. 75 1820

  • [1] Liang Wei-Chen, Wang Yu-Han, Zhang Xi, Wang Fei, Jia Feng-Dong, Xue Ping, Zhong Zhi-Ping. Analysis and simulation of time-of-flight spectrum in Rb+-Rb hybrid trap. Acta Physica Sinica, 2023, 72(9): 093401. doi: 10.7498/aps.72.20222273
    [2] Zhao Jia-Lin, Cheng Kai, Yu Xue-Ke, Zhao Ji-Jun, Su Yan. Theoretical research of time-dependent density functional on initiated photo-dissociation of some typical energetic materials at excited state. Acta Physica Sinica, 2021, 70(20): 203301. doi: 10.7498/aps.70.20210670
    [3] Luo Jin-Long, Ling Feng-Zi, Li Shuai, Wang Yan-Mei, Zhang Bing. Ultrafast photodissociation dynamics of butanone in 3s Rydberg state. Acta Physica Sinica, 2017, 66(2): 023301. doi: 10.7498/aps.66.023301
    [4] Qin Chao-Chao, Huang Yan, Peng Yu-Feng. Photodissociation dynamics of Br2 in wavelength range of 360-610 nm. Acta Physica Sinica, 2017, 66(19): 193301. doi: 10.7498/aps.66.193301
    [5] Liu Yu-Zhu, Chen Yun-Yun, Zheng Gai-Ge, Jin Feng, Gregor Knopp. Multiphoton ionization and dissociation dynamics of Freon-113 induced by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [6] Liu Yu-Zhu, Deng Xu-Lan, Li Shuai, Guan Yue, Li Jing, Long Jin-You, Zhang Bing. Multi-photon dissociation dynamics of Freon 114B2 under UV radiation by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(19): 193301. doi: 10.7498/aps.65.193301
    [7] Liu Yu-Zhu, Xiao Shao-Rong, Wang Jun-Feng, He Zhong-Fu, Qiu Xue-Jun, Gregor Knopp. Multi-photon dissociation dynamics of Freon 1110 induced by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(11): 113301. doi: 10.7498/aps.65.113301
    [8] Yang Xue, Yan Bing, Lian Ke-Yan, Ding Da-Jun. Theoretical study on the photodissociation reaction of α-cyclohexanedione in ground state. Acta Physica Sinica, 2015, 64(21): 213101. doi: 10.7498/aps.64.213101
    [9] Yao Hong-Bin, Zhang Ji, Peng Min, Li Wen-Liang. Theoretical study of the dissociation of H2+ and the quantum control of dynamic process by an intense laser field. Acta Physica Sinica, 2014, 63(19): 198202. doi: 10.7498/aps.63.198202
    [10] Wang Yan, Yao Zhi, Feng Chun-Lei, Liu Jia-Hong, Ding Hong-Bin. 355 nm laser photoionization of formaldehyde time-of-flight mass spectroscopic study. Acta Physica Sinica, 2012, 61(1): 013301. doi: 10.7498/aps.61.013301
    [11] Yuan Jin-Peng, Ji Zhong-Hua, Yang Yan, Zhang Hong-Shan, Zhao Yan-Ting, Ma Jie, Wang Li-Rong, Xiao Lian-Tuan, Jia Suo-Tang. Experimental investigation on ionized ultracold molecules formed in a magneto-optical trap by time-of-flight mass spectroscopy. Acta Physica Sinica, 2012, 61(18): 183301. doi: 10.7498/aps.61.183301
    [12] Liu Yu-Zhu, Xiao Shao-Rong, Zhang Cheng-Yi, Zheng Gai-Ge, Chen Yun-Yun. Calibration of velocity map imaging system and photodissociation dynamics of 1, 4-C4H8BrCl. Acta Physica Sinica, 2012, 61(19): 193301. doi: 10.7498/aps.61.193301
    [13] Wang Zhen-Xia, Zhu Jian-Kang, Ren Cui-Lan, Zhang Wei. Systhesis of C59N and C19N crystals. Acta Physica Sinica, 2009, 58(7): 5046-5050. doi: 10.7498/aps.58.5046
    [14] Li Rui, Yan Bing, Zhao Shu-Tao, Guo Qing-Qun, Lian Ke-Yan, Tian Chuan-Jin, Pan Shou-Fu. Spin-orbit ab initio calculation of photodissociation of methyl iodide. Acta Physica Sinica, 2008, 57(7): 4130-4133. doi: 10.7498/aps.57.4130
    [15] Yao Guan-Xin, Wang Xiao-Li, Du Chuan-Mei, Li Hui-Min, Zhang Xian-Yi, Zheng Xian-Feng, Ji Xue-Han, Cui Zhi-Feng. An experimental investigation on the resonance enhanced multiphoton ionization and dissociation processes of acetone. Acta Physica Sinica, 2006, 55(5): 2210-2214. doi: 10.7498/aps.55.2210
    [16] Shi Yong, Li Qi-Feng, Wang Hua, Dai Jing-Hua, Liu Shi-Lin, Ma Xing-Xiao. An approach to obtain the photofragment translational energy distribution from time-of-flight profile. Acta Physica Sinica, 2005, 54(5): 2418-2423. doi: 10.7498/aps.54.2418
    [17] Luo Xiao-Lin, Kong Xiang-Lei, Niu Dong-Mei, Qu Hong-Bo, Li Hai-Yang. Cluster-enhanced generation of multicharged xenon ions in nanosecond laser ionization of xenon beam. Acta Physica Sinica, 2005, 54(2): 606-611. doi: 10.7498/aps.54.606
    [18] Wang Zhong, Zhang Li-Min, Wang Feng, Li Jiang, Yu Shu-Qin. Study on the photofragment excitation spectrum of SO+2 in the range of 281-332nm. Acta Physica Sinica, 2003, 52(12): 3027-3034. doi: 10.7498/aps.52.3027
    [19] Xu Hai-Feng, Liu Shi-Lin, Ma Xing-Xiao, Dai Dong-Xu, Xie Jin-Chun, Sha Guo-He. . Acta Physica Sinica, 2002, 51(2): 240-246. doi: 10.7498/aps.51.240
    [20] Hu Zheng-Fa, Wang Zhen-Ya, Kong Xiang-Lei, Zhang Xian-Yi, Li Hai-Yang, Zhou Shi-Kang, Wang Juan, Wu Guo-Hua, Sheng Liu-Si, Zhang Yun-Wu. . Acta Physica Sinica, 2002, 51(2): 235-239. doi: 10.7498/aps.51.235
Metrics
  • Abstract views:  6275
  • PDF Downloads:  66
  • Cited By: 0
Publishing process
  • Received Date:  01 May 2018
  • Accepted Date:  15 August 2018
  • Published Online:  20 October 2019

/

返回文章
返回
Baidu
map