搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1,2-环己二酮基态光解离反应的理论研究

杨雪 闫冰 连科研 丁大军

引用本文:
Citation:

1,2-环己二酮基态光解离反应的理论研究

杨雪, 闫冰, 连科研, 丁大军

Theoretical study on the photodissociation reaction of α-cyclohexanedione in ground state

Yang Xue, Yan Bing, Lian Ke-Yan, Ding Da-Jun
PDF
导出引用
  • 通过密度泛函理论计算研究了1, 2-环己二酮(α-CHD)基态光解离反应的势能面. 通过IRC方法确定了5个主要的反应通道, 相应的产物分别为P1(c-C5H8O+CO), P2(2C2H4+2CO), P3(CH2CHCH2CH2CHO+CO), P4(2CH2CO+C2H4)和P5(CH3CHCO+CH2CHCHO). 获得了反应过程中反应物、产物、中间体和过渡态的结构参数. 详细阐述了这些通道的反应过程, 分析了其反应机理, 总结出最优的反应路径为α-CHD→c-C5H8O+CO. 理论分析与实验结果相符. 获得的结果为进一步进行与1, 2-环己二酮相关的研究提供有价值的信息.
    The α-cyclohexanedione (α-CHD) molecule is an important structural unit in the six-membered ring systems with a large number ofbiologically meaningfulmoleculeswhich have been found. It has important applications in synthetic science also. It is found that some fragments can be obtained through vacuum ultraviolet absorption spectrum and induction photolysis experiments for α-CHD molecules. In order to understand the dissociation reaction mechanism of α-CHD and reveal the resource of those fragments, the potential energy surface of the dissociation reaction for α-CHD molecules in ground state is studied by B3LYP and CCSD(T) methods. The reaction paths of the products are obtained, such as P1(c-C5H8O+ CO), P2(2 C2H4+ 2 CO), P3 (CH2CHCH2CH2CHO+ CO), P4(2 C2H2O+ C2H4), P5(CH3CHCO+ CH2CHCHO). And the structure parameters of the reactant, products, intermediates and transition states in the reaction processes are also obtained. Their reaction mechanisms can be summarized as the isomerization and dissociation processes, and these processes mainly involve the hydrogen atom transfer, ring-opening and C–C bond cleavages. A reactionchannel in which α-CHD dissociates into cyclopentanone and CO needs lower energy, so it is more advantage our to make dissociation study than other studies. In addition, we think that α-dissociationreaction cannotoccur directly in ground state from our calculations. Based on the UV photolysis experiment of α-CHD with a wavelength of 253.7 nm (112.7 kcal/mol) and the theoretical calculation of potential energy surface in ground state, we obtain that Path 1 (α-CHD→ c-C5H8O+ CO) is the most possible channel, Path 3 (α-CHD→ CH2CHCH2CH2CHO+ CO) is the next, and Path 5(α-CHD→ CH3CHCO+ CH2CHCHO) is the third, while Path 2 (α-CHD→ 2 C2H4+ 2 CO) and Path 4 (α-CHD→ 2 CH2CO+ C2H4) are difficult to be achieved. So c-C5H8O and CO are the major fragment products, CH2CHCH2CH2CHO is the subsidiary one, maybe a minor distribution of CH3CHCO and CH2CHCHO, but the fragments C2H4 and CH2CO are difficult to obtain. This agrees well with the analysis using mass spectrometry in experiment. Results can clarify the microcosmic reaction mechanism of the photodissociation reaction for α-CHD molecule in ground state. It may provide an important reference for realizing its spectrum in-depth. The obtained results are informative for future studies on α-CHD relative.
      通信作者: 杨雪, yangxue11791539@163.com
    • 基金项目: 国家自然科学基金(批准号: 11447194, 21271084)资助的课题.
      Corresponding author: Yang Xue, yangxue11791539@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11447194, 21271084).
    [1]

    Kusaba M, Tsunawaki Y 2007 Radiat. Phys. Chem. 76 1447

    [2]

    Moortgat G K, Meyrahn H, Warneck P 2010 Chem. Phys. Chem. 11 3896

    [3]

    Song Y D, Chen Z, Yang X, Sun C K, Zhang C C, Hu Z 2013 Chin. Phys. B 22 103301

    [4]

    Ananda S, Schlegel H B 2004 Phys. Chem. Chem. Phys. 6 5166

    [5]

    Wang Q, Wu D, Jin M, Liu F, Hu F, Cheng X, Liu H, Hu Z, Ding D, Mineo H, Dyakov Y A, Mebel A M, Chao S D, Lin S H 2008 J. Chem. Phys. 129 204302

    [6]

    Yao G X, Wang X L, Du C M, Li H M, Zhang X Y, Zheng X F, Ji X H, Cui Z F 2006 Acta Phys. Sin. 55 2210 (in Chinese) [姚关心, 汪小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤 2006 55 2210]

    [7]

    Cui G L, Li Q S, Zhang F, Fang W H, Yu J G 2006 J. Phys. Chem. A 110 11839

    [8]

    Ding W J, Fang W H, Liu R Z, Fang D C 2002 J. Chem. Phys. 117 8745

    [9]

    Xiao H Y, Liu Y J, Fang W H 2007 J. Chem. Phys. 127 244313

    [10]

    He H Y, Fang W H 2003 J. Am. Chem. Soc. 125 16139

    [11]

    Chen W K, Cheng P Y 2005 J. Phys. Chem. A 109 6818

    [12]

    Rajakumar B, Gierczak T, Flad J E, Ravishankara A R, Burkholder J B 2008 J Photochem. Photobio. A 199 336

    [13]

    Fukamiya N, Lee K, Muhammad I, Murakami C, Okano M, Harvey I, Pelletier J 2005 J. Cancer Lett. 220 37

    [14]

    Gianturco M A, Giammarino A S, Pitcher R G 1963 Tetrahedron 19 2051

    [15]

    Francis J T, Hitchcock A P 1994 J. Phys. Chem. 98 3650

    [16]

    Duval C, Lecomte J 1962 Acad. Sci. 36 254

    [17]

    Samanta A K, Pandey P, Bandyopadhyay B, Chakraborty T 2010 J. Mol. Struct. 963 234

    [18]

    Schwarzenbach G, Wittwer C H 1947 Chim. Acta. 30 663

    [19]

    Bouchoux G, Hoppilliard Y, Houriet R 1987 New J. Chem. 11 225

    [20]

    Shen Q, Traetteberg M, Samdal S 2009 J. Mol. Struct. 923 94

    [21]

    Mukhopadhyay A, Mukherjee M, Ghosh A K, Chakraborty T 2011 J. Phys. Chem. A 115 7494

    [22]

    Wu L J, Sui Q T, Zhang D, Zhang L, Qi Y 2015 Acta Phys. Sin. 64 042102 (in Chinese) [吴丽君, 随强涛, 张多, 张林, 祁阳 2015 64 042102]

    [23]

    Ziegler T 1991 Chem. Rev. 91 651

    [24]

    Xie J, Feng D C, Feng S Y, Ding Y Q 2007 Struct Chem. 18 65

    [25]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Jr. Montgomery J A, Vreven T, Kuden K N, Burant J C, Millam J M, Iyengar S S, Thomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, MoroKuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich J A S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui C, Baboul A G, Clifford B S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaroni I, Martin R L, Fox D J, Keith T, AlLaham M A, Peng C Y, Nanayakkara A, Challacomb M, Gill P M W, Johnson B, Chen W, Wong W W, Gonzales C, Pople J A 2004 Gaussian 03, Revision D.01, Pittsburgh, PA Gaussian Inc

    [26]

    Saito S 1976 Chem. Phys. Lett. 42 399

    [27]

    Wu C C, Lien M H 1996 J. Phys. Chem. 100 594

    [28]

    Majumder C, Jayakumar O D, Vatsa R K 1999 Chem. Phys. Lett. 304 51

    [29]

    Chong D P, Hu C H 1998 J. Electron. Spectros. 94 181

    [30]

    Le H T, Flammang R, Gerbaux P, Bouchoux G, Nguyen M T 2001 J. Phys. Chem. A 105 11582

  • [1]

    Kusaba M, Tsunawaki Y 2007 Radiat. Phys. Chem. 76 1447

    [2]

    Moortgat G K, Meyrahn H, Warneck P 2010 Chem. Phys. Chem. 11 3896

    [3]

    Song Y D, Chen Z, Yang X, Sun C K, Zhang C C, Hu Z 2013 Chin. Phys. B 22 103301

    [4]

    Ananda S, Schlegel H B 2004 Phys. Chem. Chem. Phys. 6 5166

    [5]

    Wang Q, Wu D, Jin M, Liu F, Hu F, Cheng X, Liu H, Hu Z, Ding D, Mineo H, Dyakov Y A, Mebel A M, Chao S D, Lin S H 2008 J. Chem. Phys. 129 204302

    [6]

    Yao G X, Wang X L, Du C M, Li H M, Zhang X Y, Zheng X F, Ji X H, Cui Z F 2006 Acta Phys. Sin. 55 2210 (in Chinese) [姚关心, 汪小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤 2006 55 2210]

    [7]

    Cui G L, Li Q S, Zhang F, Fang W H, Yu J G 2006 J. Phys. Chem. A 110 11839

    [8]

    Ding W J, Fang W H, Liu R Z, Fang D C 2002 J. Chem. Phys. 117 8745

    [9]

    Xiao H Y, Liu Y J, Fang W H 2007 J. Chem. Phys. 127 244313

    [10]

    He H Y, Fang W H 2003 J. Am. Chem. Soc. 125 16139

    [11]

    Chen W K, Cheng P Y 2005 J. Phys. Chem. A 109 6818

    [12]

    Rajakumar B, Gierczak T, Flad J E, Ravishankara A R, Burkholder J B 2008 J Photochem. Photobio. A 199 336

    [13]

    Fukamiya N, Lee K, Muhammad I, Murakami C, Okano M, Harvey I, Pelletier J 2005 J. Cancer Lett. 220 37

    [14]

    Gianturco M A, Giammarino A S, Pitcher R G 1963 Tetrahedron 19 2051

    [15]

    Francis J T, Hitchcock A P 1994 J. Phys. Chem. 98 3650

    [16]

    Duval C, Lecomte J 1962 Acad. Sci. 36 254

    [17]

    Samanta A K, Pandey P, Bandyopadhyay B, Chakraborty T 2010 J. Mol. Struct. 963 234

    [18]

    Schwarzenbach G, Wittwer C H 1947 Chim. Acta. 30 663

    [19]

    Bouchoux G, Hoppilliard Y, Houriet R 1987 New J. Chem. 11 225

    [20]

    Shen Q, Traetteberg M, Samdal S 2009 J. Mol. Struct. 923 94

    [21]

    Mukhopadhyay A, Mukherjee M, Ghosh A K, Chakraborty T 2011 J. Phys. Chem. A 115 7494

    [22]

    Wu L J, Sui Q T, Zhang D, Zhang L, Qi Y 2015 Acta Phys. Sin. 64 042102 (in Chinese) [吴丽君, 随强涛, 张多, 张林, 祁阳 2015 64 042102]

    [23]

    Ziegler T 1991 Chem. Rev. 91 651

    [24]

    Xie J, Feng D C, Feng S Y, Ding Y Q 2007 Struct Chem. 18 65

    [25]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Jr. Montgomery J A, Vreven T, Kuden K N, Burant J C, Millam J M, Iyengar S S, Thomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, MoroKuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich J A S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui C, Baboul A G, Clifford B S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaroni I, Martin R L, Fox D J, Keith T, AlLaham M A, Peng C Y, Nanayakkara A, Challacomb M, Gill P M W, Johnson B, Chen W, Wong W W, Gonzales C, Pople J A 2004 Gaussian 03, Revision D.01, Pittsburgh, PA Gaussian Inc

    [26]

    Saito S 1976 Chem. Phys. Lett. 42 399

    [27]

    Wu C C, Lien M H 1996 J. Phys. Chem. 100 594

    [28]

    Majumder C, Jayakumar O D, Vatsa R K 1999 Chem. Phys. Lett. 304 51

    [29]

    Chong D P, Hu C H 1998 J. Electron. Spectros. 94 181

    [30]

    Le H T, Flammang R, Gerbaux P, Bouchoux G, Nguyen M T 2001 J. Phys. Chem. A 105 11582

  • [1] 施斌, 袁荔, 唐天宇, 陆利敏, 赵先豪, 魏晓楠, 唐延林. 特丁基对苯二酚的光谱及密度泛函研究.  , 2021, 70(5): 053102. doi: 10.7498/aps.70.20201555
    [2] 赵嘉琳, 程开, 于雪克, 赵纪军, 苏艳. 几种典型含能材料光激发解离的含时密度泛函理论研究.  , 2021, 70(20): 203301. doi: 10.7498/aps.70.20210670
    [3] 赵文丽, 王永刚, 张路路, 岳大光, 孟庆田. 基于新CH2(${\tilde {\bf{X}}{}^3}{\bf{A''}}$)势能面的${\bf C}{\bf({}^3}{\bf{P})} + {\bf{H}_2(}{\bf X^1}\Sigma _{\bf g}^ + {\bf )} $ $ \to {\bf H({}^2}{\bf S}) + {\bf CH}{(\bf{}^2}\Pi ) $反应量子波包动力学.  , 2020, 69(8): 083401. doi: 10.7498/aps.69.20200132
    [4] 孙启响, 闫冰. CH3I2+的二体、三体解离过程的理论研究.  , 2017, 66(9): 093101. doi: 10.7498/aps.66.093101
    [5] 秦朝朝, 黄燕, 彭玉峰. Br2分子在360610 nm的光解离动力学研究.  , 2017, 66(19): 193301. doi: 10.7498/aps.66.193301
    [6] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究.  , 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [7] 姚洪斌, 张季, 彭敏, 李文亮. H2+在强激光场中的解离及其量子调控的理论研究.  , 2014, 63(19): 198202. doi: 10.7498/aps.63.198202
    [8] 徐莹莹, 阚玉和, 武洁, 陶委, 苏忠民. 并苯纳米环[6]CA及其衍生物的电子结构和光物理性质的密度泛函理论研究.  , 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [9] 张蓓, 保安, 陈楚, 张军. ConCm(n=15; m=1,2)团簇的密度泛函理论研究.  , 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [10] 刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云. 离子速度成像系统校准及1,4-氯溴丁烷的紫外光解动力学.  , 2012, 61(19): 193301. doi: 10.7498/aps.61.193301
    [11] 孙路石, 张安超, 向军, 郭培红, 刘志超, 苏胜. 密度泛函理论研究Hg与Auqn(n=1—6, q=0,+1,-1) 团簇的相互作用.  , 2011, 60(7): 073103. doi: 10.7498/aps.60.073103
    [12] 林峰, 郑法伟, 欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究.  , 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [13] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质.  , 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [14] 陈玉红, 康 龙, 张材荣, 罗永春, 元丽华, 李延龙. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究.  , 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [15] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究.  , 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [16] 李 瑞, 闫 冰, 赵书涛, 郭庆群, 连科研, 田传进, 潘守甫. CH3I分子的光解离的自旋-轨道从头计算.  , 2008, 57(7): 4130-4133. doi: 10.7498/aps.57.4130
    [17] 余春日, 凤尔银, 程新路, 杨向东. He-HI复合物势能面及微分散射截面的理论研究.  , 2007, 56(8): 4441-4447. doi: 10.7498/aps.56.4441
    [18] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究.  , 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [19] 韩慧仙, 彭 谦, 文振翼, 王育彬. S2O分子的局域势能面和振动光谱的解析.  , 2005, 54(1): 78-84. doi: 10.7498/aps.54.78
    [20] 王晓艳, 丁世良. 用李代数方法构造四原子分子的势能面.  , 2004, 53(2): 423-426. doi: 10.7498/aps.53.423
计量
  • 文章访问数:  5905
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-11
  • 修回日期:  2015-03-21
  • 刊出日期:  2015-11-05

/

返回文章
返回
Baidu
map