Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multiphoton ionization and dissociation dynamics of Freon-113 induced by femtosecond laser pulse

Liu Yu-Zhu Chen Yun-Yun Zheng Gai-Ge Jin Feng Gregor Knopp

Citation:

Multiphoton ionization and dissociation dynamics of Freon-113 induced by femtosecond laser pulse

Liu Yu-Zhu, Chen Yun-Yun, Zheng Gai-Ge, Jin Feng, Gregor Knopp
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The ozone layer which absorbs harmful solar UV radiation is an essential umbrella for human. However, a large number of exhausts of Freon released by human activity into the atmosphere pose a great threat to the ozone layer. The UV sunlight radiation induced Freon dissociation produces chlorine radicals, which are found to be the main culprit for destroying the atmospheric ozone. In this paper, multiphoton ionization and dissociation dynamics of Freon-113 (CF2ClCFCl2) induced by femtosecond laser pulse are studied by time-of-flight mass spectrometry coupled with velocity map imaging technique. Fragment mass spectra of Freon-113 are measured by time-of-flight mass spectrometry. No parent ions are discovered in the time-of-flight mass spectra, and all the detected ions are from the fragmentation induced by the laser pulse. Daughter ions CFCl2+, CF2Cl+, C2F3Cl2+ are found to be the three major fragmentation ions in the multi-photon ionization and dissociation. Several photodissociation channels are discussed and concluded by further analysis and calibration (via the ratio of mass to charge) of the measured time-of-flight mass spectra. Three main photodissociation mechanisms are found as follows: 1) C2F3Cl3+→C2F3Cl2++Cl with breaking C--Cl bond and directly producing the Cl radical; 2) C2F3Cl3+ →CFCl2++CF2Cl with breaking the C--C; 3) C2F3Cl3+ →CF2Cl++CFCl2 with breaking the C--C bond. Ion images of the three main fragments C2F3Cl2+, CFCl2+ and CF2Cl+ are measured by the velocity map imaging setup. The speed distributions of these three fragment ions are obtained from the velocity map imaging. The speed distribution of C2F3Cl2+ with breaking C--Cl bond can be fitted by two Gaussian distributions while the speed distributions of both CFCl2+ and CF2Cl+ with breaking the C--C bond can be well fitted by one Gaussian distribution. The different fittings reflect different production channels. The detailed photodissociation dynamics is obtained by analyzing the kinetic energy distribution and angular distribution of the fragment ions. Additionally, density functional theory calculations on high-precision level are also performed on photodissociation dynamics for further analysis and discussion. An in-depth understanding of dissociation dynamics of freon can provide theoretical reference and experimental basis for further controlling the dissociation process that can do destruction to the ozone layer.
      Corresponding author: Liu Yu-Zhu, yuzhu.liu@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11304157) and the Six Talent Peaks Project in Jiangsu Province, China (Grant No. JNHB-011).
    [1]

    Sinreich R, Merten A, Molina L, Volkamer R 2013 Atmos. Meas. Tech. 6 1521

    [2]

    Liu J, Zou Y, Si F Q, Zhou H J, Dou K, Wang Y, Liu W Q 2015 Acta Phys. Sin. 64 164209 (in Chinese) [刘进, 邹莹, 司福祺, 周海金, 窦科, 王煜, 刘文清 2015 64 164209]

    [3]

    Wu F C, Li A, Xie P H, Chen H, Ling L Y, Xu J, Mou F S, Zhang J, Shen J C, Liu J G, Liu W Q 2015 Acta Phys. Sin. 64 114211 (in Chinese) [吴丰成, 李昂, 谢品华, 陈浩, 凌六一, 徐晋, 牟福生, 张杰, 申进朝, 刘建国, 刘文清 2015 64 114211]

    [4]

    Hendick F, Muller J F, Clemer K, Wang P, de Maziere M, Fayt C, Gielen C, Hermans C, Ma J Z, Pinardi G, Stavrakou T, Vlemmix T, van Roozendael M 2014 Atmos. Chem. Phys. 14 765

    [5]

    Shen J, Tan H, Wang J, Wang J, Lee S 2015 J. Internet Technol. 16 171

    [6]

    Chang J, Wang T, Zhang C, Ge Y, Tao Z 2013 Chin. Phys. Lett. 30 114206

    [7]

    Zheng J, Yang D, Ma Y, Chen M, Chang J, Li S, Wang M 2015 Atmosph. Environ. 119 167

    [8]

    Zhu B 2012 Trans. Atmosph. Sci. 35 513 (in Chinese) [朱彬 2012 大气科学学报 35 513]

    [9]

    Xiao S R, Shi L F, Huang B 2015 Laser & Optoelectronics Progress 52 071206 (in Chinese) [肖韶荣, 石刘峰, 黄彪 2015 激光与光电子学进展 52 071206]

    [10]

    Farman J C, Gardiner B G, Shanklin J D 1985 Nature 315 207

    [11]

    Molina M J, Rowland F S 1974 Nature 249 810

    [12]

    Wang D S, Kim M S, Choe J C, Ha T K 2001 J. Chem. Phys. 115 5454

    [13]

    Butler J H, Battle M, Bender M L, Montzka S A, Clarke A D, Saltzman E S, Sucher C M, Severinghaus J P, Elkins J W 1999 Nature 399 749

    [14]

    Chen H Y, Lien C Y, Lin W Y, Lee Y T, Lin J J 2009 Science 324 781

    [15]

    Hobe M 2007 Science 318 1878

    [16]

    Schiermeier Q 2007 Nature 449 382

    [17]

    Pope F D, Hansen J C, Bayes K D, Friedl R R, Sander S P 2007 J. Phys. Chem. A 111 4322

    [18]

    Hobe M, Salawitch R J, Canty T, Keller-Rudek H, Moortgat G K, Grooß J U, Mller R, Stroh F 2007 Atmos. Chem. Phys. 7 3055

    [19]

    Lokhman V N, Ryabov E A, Ogurok D D 2004 Tech. Phys. Lett. 30 345

    [20]

    Scully S W J, Mackie R A, Browning R, Dunn K F, Latimer C J 2004 Phys. Rev. A 70 042707

    [21]

    Liu Y Z, Xiao S R, Zhang C Y, Zheng G G, Chen Y Y 2012 Acta Phys. Sin. 61 193301 (in Chinese) [刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云 2012 61 193301]

    [22]

    Nachbor M D, Giese C F, Gentry W R 1995 J. Phys. Chem. 99 15400

    [23]

    Hippler M, Quack M, Bumewes B 1997 Phys. Chem. 101 356

    [24]

    Wang S K, Tsai W C, Chou L C, Chen J, Wu Y H, He T M, Feng K S, Wen C R 2012 Surf. Sci. 606 1062

    [25]

    Harvey J, Tuckett R P, Bodi A 2012 J. Phys. Chem. A 116 9696

    [26]

    Crolin D, Piancastelli M N, Stolte W C, Lindle D W 2009 J. Chem. Phys. 131 244301

    [27]

    Chen L L, Tian S X, Xu Y F, Chu G B, Liu F Y, Shan X B, Sheng L S 2011 Int. J. Mass Spectrom. 305 20

    [28]

    Zuiderweg A, Kaiser J, Laube J C, Rockmann T, Holzinger R 2011 Atmos. Chem. Phys. Discuss. 11 33173

    [29]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [30]

    Parker D H, Eppink A T J B 1997 J. Chem. Phys. 107 2357

    [31]

    Liu Y Z, Gerber T, Knopp G 2014 Acta Phys. Sin. 63 244208 (in Chinese) [刘玉柱, Gerber T, Knopp G 2014 63 244208]

    [32]

    Frisch M J, Trucks G W, Schlegel H B et al. 2004 Gaussian 03, Revision D.01, Pittsburgh, PA Gaussian Inc

    [33]

    Watanabe K, Nakayama T, Mottl J 1962 J. Quant. Spectry. Radiative Transfer 2 369

  • [1]

    Sinreich R, Merten A, Molina L, Volkamer R 2013 Atmos. Meas. Tech. 6 1521

    [2]

    Liu J, Zou Y, Si F Q, Zhou H J, Dou K, Wang Y, Liu W Q 2015 Acta Phys. Sin. 64 164209 (in Chinese) [刘进, 邹莹, 司福祺, 周海金, 窦科, 王煜, 刘文清 2015 64 164209]

    [3]

    Wu F C, Li A, Xie P H, Chen H, Ling L Y, Xu J, Mou F S, Zhang J, Shen J C, Liu J G, Liu W Q 2015 Acta Phys. Sin. 64 114211 (in Chinese) [吴丰成, 李昂, 谢品华, 陈浩, 凌六一, 徐晋, 牟福生, 张杰, 申进朝, 刘建国, 刘文清 2015 64 114211]

    [4]

    Hendick F, Muller J F, Clemer K, Wang P, de Maziere M, Fayt C, Gielen C, Hermans C, Ma J Z, Pinardi G, Stavrakou T, Vlemmix T, van Roozendael M 2014 Atmos. Chem. Phys. 14 765

    [5]

    Shen J, Tan H, Wang J, Wang J, Lee S 2015 J. Internet Technol. 16 171

    [6]

    Chang J, Wang T, Zhang C, Ge Y, Tao Z 2013 Chin. Phys. Lett. 30 114206

    [7]

    Zheng J, Yang D, Ma Y, Chen M, Chang J, Li S, Wang M 2015 Atmosph. Environ. 119 167

    [8]

    Zhu B 2012 Trans. Atmosph. Sci. 35 513 (in Chinese) [朱彬 2012 大气科学学报 35 513]

    [9]

    Xiao S R, Shi L F, Huang B 2015 Laser & Optoelectronics Progress 52 071206 (in Chinese) [肖韶荣, 石刘峰, 黄彪 2015 激光与光电子学进展 52 071206]

    [10]

    Farman J C, Gardiner B G, Shanklin J D 1985 Nature 315 207

    [11]

    Molina M J, Rowland F S 1974 Nature 249 810

    [12]

    Wang D S, Kim M S, Choe J C, Ha T K 2001 J. Chem. Phys. 115 5454

    [13]

    Butler J H, Battle M, Bender M L, Montzka S A, Clarke A D, Saltzman E S, Sucher C M, Severinghaus J P, Elkins J W 1999 Nature 399 749

    [14]

    Chen H Y, Lien C Y, Lin W Y, Lee Y T, Lin J J 2009 Science 324 781

    [15]

    Hobe M 2007 Science 318 1878

    [16]

    Schiermeier Q 2007 Nature 449 382

    [17]

    Pope F D, Hansen J C, Bayes K D, Friedl R R, Sander S P 2007 J. Phys. Chem. A 111 4322

    [18]

    Hobe M, Salawitch R J, Canty T, Keller-Rudek H, Moortgat G K, Grooß J U, Mller R, Stroh F 2007 Atmos. Chem. Phys. 7 3055

    [19]

    Lokhman V N, Ryabov E A, Ogurok D D 2004 Tech. Phys. Lett. 30 345

    [20]

    Scully S W J, Mackie R A, Browning R, Dunn K F, Latimer C J 2004 Phys. Rev. A 70 042707

    [21]

    Liu Y Z, Xiao S R, Zhang C Y, Zheng G G, Chen Y Y 2012 Acta Phys. Sin. 61 193301 (in Chinese) [刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云 2012 61 193301]

    [22]

    Nachbor M D, Giese C F, Gentry W R 1995 J. Phys. Chem. 99 15400

    [23]

    Hippler M, Quack M, Bumewes B 1997 Phys. Chem. 101 356

    [24]

    Wang S K, Tsai W C, Chou L C, Chen J, Wu Y H, He T M, Feng K S, Wen C R 2012 Surf. Sci. 606 1062

    [25]

    Harvey J, Tuckett R P, Bodi A 2012 J. Phys. Chem. A 116 9696

    [26]

    Crolin D, Piancastelli M N, Stolte W C, Lindle D W 2009 J. Chem. Phys. 131 244301

    [27]

    Chen L L, Tian S X, Xu Y F, Chu G B, Liu F Y, Shan X B, Sheng L S 2011 Int. J. Mass Spectrom. 305 20

    [28]

    Zuiderweg A, Kaiser J, Laube J C, Rockmann T, Holzinger R 2011 Atmos. Chem. Phys. Discuss. 11 33173

    [29]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [30]

    Parker D H, Eppink A T J B 1997 J. Chem. Phys. 107 2357

    [31]

    Liu Y Z, Gerber T, Knopp G 2014 Acta Phys. Sin. 63 244208 (in Chinese) [刘玉柱, Gerber T, Knopp G 2014 63 244208]

    [32]

    Frisch M J, Trucks G W, Schlegel H B et al. 2004 Gaussian 03, Revision D.01, Pittsburgh, PA Gaussian Inc

    [33]

    Watanabe K, Nakayama T, Mottl J 1962 J. Quant. Spectry. Radiative Transfer 2 369

  • [1] Liang Wei-Chen, Wang Yu-Han, Zhang Xi, Wang Fei, Jia Feng-Dong, Xue Ping, Zhong Zhi-Ping. Analysis and simulation of time-of-flight spectrum in Rb+-Rb hybrid trap. Acta Physica Sinica, 2023, 72(9): 093401. doi: 10.7498/aps.72.20222273
    [2] Zhao Jia-Lin, Cheng Kai, Yu Xue-Ke, Zhao Ji-Jun, Su Yan. Theoretical research of time-dependent density functional on initiated photo-dissociation of some typical energetic materials at excited state. Acta Physica Sinica, 2021, 70(20): 203301. doi: 10.7498/aps.70.20210670
    [3] Yan Yi-Hui, Liu Yu-Zhu, Ding Peng-Fei, Yin Wen-Yi. Multiphoton ionization dissociation dynamics of iodoethane studied with velocity map imaging technique. Acta Physica Sinica, 2018, 67(20): 203301. doi: 10.7498/aps.67.20181468
    [4] Luo Jin-Long, Ling Feng-Zi, Li Shuai, Wang Yan-Mei, Zhang Bing. Ultrafast photodissociation dynamics of butanone in 3s Rydberg state. Acta Physica Sinica, 2017, 66(2): 023301. doi: 10.7498/aps.66.023301
    [5] Qin Chao-Chao, Huang Yan, Peng Yu-Feng. Photodissociation dynamics of Br2 in wavelength range of 360-610 nm. Acta Physica Sinica, 2017, 66(19): 193301. doi: 10.7498/aps.66.193301
    [6] Ran Mao-Yi, Hu Yao-Gai, Zhao Zheng-Yu, Zhang Yuan-Nong. Effect of high power microwave injection on tropospheric freon. Acta Physica Sinica, 2017, 66(4): 045101. doi: 10.7498/aps.66.045101
    [7] Liu Yu-Zhu, Deng Xu-Lan, Li Shuai, Guan Yue, Li Jing, Long Jin-You, Zhang Bing. Multi-photon dissociation dynamics of Freon 114B2 under UV radiation by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(19): 193301. doi: 10.7498/aps.65.193301
    [8] Liu Yu-Zhu, Xiao Shao-Rong, Wang Jun-Feng, He Zhong-Fu, Qiu Xue-Jun, Gregor Knopp. Multi-photon dissociation dynamics of Freon 1110 induced by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(11): 113301. doi: 10.7498/aps.65.113301
    [9] Yang Xue, Yan Bing, Lian Ke-Yan, Ding Da-Jun. Theoretical study on the photodissociation reaction of α-cyclohexanedione in ground state. Acta Physica Sinica, 2015, 64(21): 213101. doi: 10.7498/aps.64.213101
    [10] Yao Hong-Bin, Zhang Ji, Peng Min, Li Wen-Liang. Theoretical study of the dissociation of H2+ and the quantum control of dynamic process by an intense laser field. Acta Physica Sinica, 2014, 63(19): 198202. doi: 10.7498/aps.63.198202
    [11] Liu Yu-Zhu, Xiao Shao-Rong, Zhang Cheng-Yi, Zheng Gai-Ge, Chen Yun-Yun. Calibration of velocity map imaging system and photodissociation dynamics of 1, 4-C4H8BrCl. Acta Physica Sinica, 2012, 61(19): 193301. doi: 10.7498/aps.61.193301
    [12] Yuan Jin-Peng, Ji Zhong-Hua, Yang Yan, Zhang Hong-Shan, Zhao Yan-Ting, Ma Jie, Wang Li-Rong, Xiao Lian-Tuan, Jia Suo-Tang. Experimental investigation on ionized ultracold molecules formed in a magneto-optical trap by time-of-flight mass spectroscopy. Acta Physica Sinica, 2012, 61(18): 183301. doi: 10.7498/aps.61.183301
    [13] Wang Yan, Yao Zhi, Feng Chun-Lei, Liu Jia-Hong, Ding Hong-Bin. 355 nm laser photoionization of formaldehyde time-of-flight mass spectroscopic study. Acta Physica Sinica, 2012, 61(1): 013301. doi: 10.7498/aps.61.013301
    [14] Wang Zhen-Xia, Zhu Jian-Kang, Ren Cui-Lan, Zhang Wei. Systhesis of C59N and C19N crystals. Acta Physica Sinica, 2009, 58(7): 5046-5050. doi: 10.7498/aps.58.5046
    [15] Li Rui, Yan Bing, Zhao Shu-Tao, Guo Qing-Qun, Lian Ke-Yan, Tian Chuan-Jin, Pan Shou-Fu. Spin-orbit ab initio calculation of photodissociation of methyl iodide. Acta Physica Sinica, 2008, 57(7): 4130-4133. doi: 10.7498/aps.57.4130
    [16] Yao Guan-Xin, Wang Xiao-Li, Du Chuan-Mei, Li Hui-Min, Zhang Xian-Yi, Zheng Xian-Feng, Ji Xue-Han, Cui Zhi-Feng. An experimental investigation on the resonance enhanced multiphoton ionization and dissociation processes of acetone. Acta Physica Sinica, 2006, 55(5): 2210-2214. doi: 10.7498/aps.55.2210
    [17] Luo Xiao-Lin, Kong Xiang-Lei, Niu Dong-Mei, Qu Hong-Bo, Li Hai-Yang. Cluster-enhanced generation of multicharged xenon ions in nanosecond laser ionization of xenon beam. Acta Physica Sinica, 2005, 54(2): 606-611. doi: 10.7498/aps.54.606
    [18] Shi Yong, Li Qi-Feng, Wang Hua, Dai Jing-Hua, Liu Shi-Lin, Ma Xing-Xiao. An approach to obtain the photofragment translational energy distribution from time-of-flight profile. Acta Physica Sinica, 2005, 54(5): 2418-2423. doi: 10.7498/aps.54.2418
    [19] Wang Zhong, Zhang Li-Min, Wang Feng, Li Jiang, Yu Shu-Qin. Study on the photofragment excitation spectrum of SO+2 in the range of 281-332nm. Acta Physica Sinica, 2003, 52(12): 3027-3034. doi: 10.7498/aps.52.3027
    [20] Hu Zheng-Fa, Wang Zhen-Ya, Kong Xiang-Lei, Zhang Xian-Yi, Li Hai-Yang, Zhou Shi-Kang, Wang Juan, Wu Guo-Hua, Sheng Liu-Si, Zhang Yun-Wu. . Acta Physica Sinica, 2002, 51(2): 235-239. doi: 10.7498/aps.51.235
Metrics
  • Abstract views:  7087
  • PDF Downloads:  242
  • Cited By: 0
Publishing process
  • Received Date:  05 November 2015
  • Accepted Date:  10 December 2015
  • Published Online:  05 March 2016

/

返回文章
返回
Baidu
map