Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on the photodissociation reaction of α-cyclohexanedione in ground state

Yang Xue Yan Bing Lian Ke-Yan Ding Da-Jun

Citation:

Theoretical study on the photodissociation reaction of α-cyclohexanedione in ground state

Yang Xue, Yan Bing, Lian Ke-Yan, Ding Da-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The α-cyclohexanedione (α-CHD) molecule is an important structural unit in the six-membered ring systems with a large number ofbiologically meaningfulmoleculeswhich have been found. It has important applications in synthetic science also. It is found that some fragments can be obtained through vacuum ultraviolet absorption spectrum and induction photolysis experiments for α-CHD molecules. In order to understand the dissociation reaction mechanism of α-CHD and reveal the resource of those fragments, the potential energy surface of the dissociation reaction for α-CHD molecules in ground state is studied by B3LYP and CCSD(T) methods. The reaction paths of the products are obtained, such as P1(c-C5H8O+ CO), P2(2 C2H4+ 2 CO), P3 (CH2CHCH2CH2CHO+ CO), P4(2 C2H2O+ C2H4), P5(CH3CHCO+ CH2CHCHO). And the structure parameters of the reactant, products, intermediates and transition states in the reaction processes are also obtained. Their reaction mechanisms can be summarized as the isomerization and dissociation processes, and these processes mainly involve the hydrogen atom transfer, ring-opening and C–C bond cleavages. A reactionchannel in which α-CHD dissociates into cyclopentanone and CO needs lower energy, so it is more advantage our to make dissociation study than other studies. In addition, we think that α-dissociationreaction cannotoccur directly in ground state from our calculations. Based on the UV photolysis experiment of α-CHD with a wavelength of 253.7 nm (112.7 kcal/mol) and the theoretical calculation of potential energy surface in ground state, we obtain that Path 1 (α-CHD→ c-C5H8O+ CO) is the most possible channel, Path 3 (α-CHD→ CH2CHCH2CH2CHO+ CO) is the next, and Path 5(α-CHD→ CH3CHCO+ CH2CHCHO) is the third, while Path 2 (α-CHD→ 2 C2H4+ 2 CO) and Path 4 (α-CHD→ 2 CH2CO+ C2H4) are difficult to be achieved. So c-C5H8O and CO are the major fragment products, CH2CHCH2CH2CHO is the subsidiary one, maybe a minor distribution of CH3CHCO and CH2CHCHO, but the fragments C2H4 and CH2CO are difficult to obtain. This agrees well with the analysis using mass spectrometry in experiment. Results can clarify the microcosmic reaction mechanism of the photodissociation reaction for α-CHD molecule in ground state. It may provide an important reference for realizing its spectrum in-depth. The obtained results are informative for future studies on α-CHD relative.
      Corresponding author: Yang Xue, yangxue11791539@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11447194, 21271084).
    [1]

    Kusaba M, Tsunawaki Y 2007 Radiat. Phys. Chem. 76 1447

    [2]

    Moortgat G K, Meyrahn H, Warneck P 2010 Chem. Phys. Chem. 11 3896

    [3]

    Song Y D, Chen Z, Yang X, Sun C K, Zhang C C, Hu Z 2013 Chin. Phys. B 22 103301

    [4]

    Ananda S, Schlegel H B 2004 Phys. Chem. Chem. Phys. 6 5166

    [5]

    Wang Q, Wu D, Jin M, Liu F, Hu F, Cheng X, Liu H, Hu Z, Ding D, Mineo H, Dyakov Y A, Mebel A M, Chao S D, Lin S H 2008 J. Chem. Phys. 129 204302

    [6]

    Yao G X, Wang X L, Du C M, Li H M, Zhang X Y, Zheng X F, Ji X H, Cui Z F 2006 Acta Phys. Sin. 55 2210 (in Chinese) [姚关心, 汪小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤 2006 55 2210]

    [7]

    Cui G L, Li Q S, Zhang F, Fang W H, Yu J G 2006 J. Phys. Chem. A 110 11839

    [8]

    Ding W J, Fang W H, Liu R Z, Fang D C 2002 J. Chem. Phys. 117 8745

    [9]

    Xiao H Y, Liu Y J, Fang W H 2007 J. Chem. Phys. 127 244313

    [10]

    He H Y, Fang W H 2003 J. Am. Chem. Soc. 125 16139

    [11]

    Chen W K, Cheng P Y 2005 J. Phys. Chem. A 109 6818

    [12]

    Rajakumar B, Gierczak T, Flad J E, Ravishankara A R, Burkholder J B 2008 J Photochem. Photobio. A 199 336

    [13]

    Fukamiya N, Lee K, Muhammad I, Murakami C, Okano M, Harvey I, Pelletier J 2005 J. Cancer Lett. 220 37

    [14]

    Gianturco M A, Giammarino A S, Pitcher R G 1963 Tetrahedron 19 2051

    [15]

    Francis J T, Hitchcock A P 1994 J. Phys. Chem. 98 3650

    [16]

    Duval C, Lecomte J 1962 Acad. Sci. 36 254

    [17]

    Samanta A K, Pandey P, Bandyopadhyay B, Chakraborty T 2010 J. Mol. Struct. 963 234

    [18]

    Schwarzenbach G, Wittwer C H 1947 Chim. Acta. 30 663

    [19]

    Bouchoux G, Hoppilliard Y, Houriet R 1987 New J. Chem. 11 225

    [20]

    Shen Q, Traetteberg M, Samdal S 2009 J. Mol. Struct. 923 94

    [21]

    Mukhopadhyay A, Mukherjee M, Ghosh A K, Chakraborty T 2011 J. Phys. Chem. A 115 7494

    [22]

    Wu L J, Sui Q T, Zhang D, Zhang L, Qi Y 2015 Acta Phys. Sin. 64 042102 (in Chinese) [吴丽君, 随强涛, 张多, 张林, 祁阳 2015 64 042102]

    [23]

    Ziegler T 1991 Chem. Rev. 91 651

    [24]

    Xie J, Feng D C, Feng S Y, Ding Y Q 2007 Struct Chem. 18 65

    [25]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Jr. Montgomery J A, Vreven T, Kuden K N, Burant J C, Millam J M, Iyengar S S, Thomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, MoroKuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich J A S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui C, Baboul A G, Clifford B S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaroni I, Martin R L, Fox D J, Keith T, AlLaham M A, Peng C Y, Nanayakkara A, Challacomb M, Gill P M W, Johnson B, Chen W, Wong W W, Gonzales C, Pople J A 2004 Gaussian 03, Revision D.01, Pittsburgh, PA Gaussian Inc

    [26]

    Saito S 1976 Chem. Phys. Lett. 42 399

    [27]

    Wu C C, Lien M H 1996 J. Phys. Chem. 100 594

    [28]

    Majumder C, Jayakumar O D, Vatsa R K 1999 Chem. Phys. Lett. 304 51

    [29]

    Chong D P, Hu C H 1998 J. Electron. Spectros. 94 181

    [30]

    Le H T, Flammang R, Gerbaux P, Bouchoux G, Nguyen M T 2001 J. Phys. Chem. A 105 11582

  • [1]

    Kusaba M, Tsunawaki Y 2007 Radiat. Phys. Chem. 76 1447

    [2]

    Moortgat G K, Meyrahn H, Warneck P 2010 Chem. Phys. Chem. 11 3896

    [3]

    Song Y D, Chen Z, Yang X, Sun C K, Zhang C C, Hu Z 2013 Chin. Phys. B 22 103301

    [4]

    Ananda S, Schlegel H B 2004 Phys. Chem. Chem. Phys. 6 5166

    [5]

    Wang Q, Wu D, Jin M, Liu F, Hu F, Cheng X, Liu H, Hu Z, Ding D, Mineo H, Dyakov Y A, Mebel A M, Chao S D, Lin S H 2008 J. Chem. Phys. 129 204302

    [6]

    Yao G X, Wang X L, Du C M, Li H M, Zhang X Y, Zheng X F, Ji X H, Cui Z F 2006 Acta Phys. Sin. 55 2210 (in Chinese) [姚关心, 汪小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤 2006 55 2210]

    [7]

    Cui G L, Li Q S, Zhang F, Fang W H, Yu J G 2006 J. Phys. Chem. A 110 11839

    [8]

    Ding W J, Fang W H, Liu R Z, Fang D C 2002 J. Chem. Phys. 117 8745

    [9]

    Xiao H Y, Liu Y J, Fang W H 2007 J. Chem. Phys. 127 244313

    [10]

    He H Y, Fang W H 2003 J. Am. Chem. Soc. 125 16139

    [11]

    Chen W K, Cheng P Y 2005 J. Phys. Chem. A 109 6818

    [12]

    Rajakumar B, Gierczak T, Flad J E, Ravishankara A R, Burkholder J B 2008 J Photochem. Photobio. A 199 336

    [13]

    Fukamiya N, Lee K, Muhammad I, Murakami C, Okano M, Harvey I, Pelletier J 2005 J. Cancer Lett. 220 37

    [14]

    Gianturco M A, Giammarino A S, Pitcher R G 1963 Tetrahedron 19 2051

    [15]

    Francis J T, Hitchcock A P 1994 J. Phys. Chem. 98 3650

    [16]

    Duval C, Lecomte J 1962 Acad. Sci. 36 254

    [17]

    Samanta A K, Pandey P, Bandyopadhyay B, Chakraborty T 2010 J. Mol. Struct. 963 234

    [18]

    Schwarzenbach G, Wittwer C H 1947 Chim. Acta. 30 663

    [19]

    Bouchoux G, Hoppilliard Y, Houriet R 1987 New J. Chem. 11 225

    [20]

    Shen Q, Traetteberg M, Samdal S 2009 J. Mol. Struct. 923 94

    [21]

    Mukhopadhyay A, Mukherjee M, Ghosh A K, Chakraborty T 2011 J. Phys. Chem. A 115 7494

    [22]

    Wu L J, Sui Q T, Zhang D, Zhang L, Qi Y 2015 Acta Phys. Sin. 64 042102 (in Chinese) [吴丽君, 随强涛, 张多, 张林, 祁阳 2015 64 042102]

    [23]

    Ziegler T 1991 Chem. Rev. 91 651

    [24]

    Xie J, Feng D C, Feng S Y, Ding Y Q 2007 Struct Chem. 18 65

    [25]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Jr. Montgomery J A, Vreven T, Kuden K N, Burant J C, Millam J M, Iyengar S S, Thomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, MoroKuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich J A S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui C, Baboul A G, Clifford B S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaroni I, Martin R L, Fox D J, Keith T, AlLaham M A, Peng C Y, Nanayakkara A, Challacomb M, Gill P M W, Johnson B, Chen W, Wong W W, Gonzales C, Pople J A 2004 Gaussian 03, Revision D.01, Pittsburgh, PA Gaussian Inc

    [26]

    Saito S 1976 Chem. Phys. Lett. 42 399

    [27]

    Wu C C, Lien M H 1996 J. Phys. Chem. 100 594

    [28]

    Majumder C, Jayakumar O D, Vatsa R K 1999 Chem. Phys. Lett. 304 51

    [29]

    Chong D P, Hu C H 1998 J. Electron. Spectros. 94 181

    [30]

    Le H T, Flammang R, Gerbaux P, Bouchoux G, Nguyen M T 2001 J. Phys. Chem. A 105 11582

  • [1] Shi Bin, Yuan Li, Tang Tian-Yu, Lu Li-Min, Zhao Xian-Hao, Wei Xiao-Nan, Tang Yan-Lin. Spectral analysis and density functional theory study of tert-butylhydroquinone. Acta Physica Sinica, 2021, 70(5): 053102. doi: 10.7498/aps.70.20201555
    [2] Zhao Jia-Lin, Cheng Kai, Yu Xue-Ke, Zhao Ji-Jun, Su Yan. Theoretical research of time-dependent density functional on initiated photo-dissociation of some typical energetic materials at excited state. Acta Physica Sinica, 2021, 70(20): 203301. doi: 10.7498/aps.70.20210670
    [3] Zhao Wen-Li, Wang Yong-Gang, Zhang Lu-Lu, Yue Da-Guang, Meng Qing-Tian. Wave packet quantum dynamics of ${\bf{C}}{(^3}{\bf{P}}) + {{\bf{H}}_2}({{\bf{X}}^1} \Sigma _{\bf{g}}^ + ) $ $ \to {\bf{H}}{(^2}{\bf{S}}) + {\bf{CH}}{(^2} \Pi ) $ reaction based on new CH2(${\tilde {\bf X}{}^3}\bf A''$) surface. Acta Physica Sinica, 2020, 69(8): 083401. doi: 10.7498/aps.69.20200132
    [4] Sun Qi-Xiang, Yan Bing. Computational study of two-body and three-body dissociation of CH3I2+. Acta Physica Sinica, 2017, 66(9): 093101. doi: 10.7498/aps.66.093101
    [5] Qin Chao-Chao, Huang Yan, Peng Yu-Feng. Photodissociation dynamics of Br2 in wavelength range of 360-610 nm. Acta Physica Sinica, 2017, 66(19): 193301. doi: 10.7498/aps.66.193301
    [6] Wen Jun-Qing, Zhang Jian-Min, Yao Pan, Zhou Hong, Wang Jun-Fei. A density functional theory study of small bimetallic PdnAl (n =18) clusters. Acta Physica Sinica, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [7] Yao Hong-Bin, Zhang Ji, Peng Min, Li Wen-Liang. Theoretical study of the dissociation of H2+ and the quantum control of dynamic process by an intense laser field. Acta Physica Sinica, 2014, 63(19): 198202. doi: 10.7498/aps.63.198202
    [8] Xu Ying-Ying, Kan Yu-He, Wu Jie, Tao Wei, Su Zhong-Min. Theoretical study on the electronic structures and photophysical properties of carbon nanorings and their analogues. Acta Physica Sinica, 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [9] Zhang Bei, Bao An, Chen Chu, Zhang Jun. Density-functional theory study of ConCm (n=15, m=1,2) clusters. Acta Physica Sinica, 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [10] Liu Yu-Zhu, Xiao Shao-Rong, Zhang Cheng-Yi, Zheng Gai-Ge, Chen Yun-Yun. Calibration of velocity map imaging system and photodissociation dynamics of 1, 4-C4H8BrCl. Acta Physica Sinica, 2012, 61(19): 193301. doi: 10.7498/aps.61.193301
    [11] Sun Lu-Shi, Zhang An-Chao, Xiang Jun, Guo Pei-Hong, Liu Zhi-Chao, Su Sheng. Density functional study of interation of Hg with small gold clusters. Acta Physica Sinica, 2011, 60(7): 073103. doi: 10.7498/aps.60.073103
    [12] Lin Feng, Zheng Fa-Wei, Ouyang Fang-Ping. A density functional theory study on water adsorption on TiO2-terminated SrTiO3(001) surface. Acta Physica Sinica, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [13] Li Xi-Bo, Wang Hong-Yan, Luo Jiang-Shan, Wu Wei-Dong, Tang Yong-Jian. Density functional theory study of the geometry, stability and electronic properties of ScnO(n=1—9) clusters. Acta Physica Sinica, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [14] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Yuan Li-Hua, Li Yan-Long. Density functional theory study on the structures and properties of (Ca3N2)n(n=1—4) clusters. Acta Physica Sinica, 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [15] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Ma Jun. Density functional theory study of [Mg(NH2)2]n(n=1—5) clusters. Acta Physica Sinica, 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [16] Li Rui, Yan Bing, Zhao Shu-Tao, Guo Qing-Qun, Lian Ke-Yan, Tian Chuan-Jin, Pan Shou-Fu. Spin-orbit ab initio calculation of photodissociation of methyl iodide. Acta Physica Sinica, 2008, 57(7): 4130-4133. doi: 10.7498/aps.57.4130
    [17] Yu Chun-Ri, Feng Er-Yin, Cheng Xin-Lu, Yang Xiang-Dong. Theoretical study of the potential energy surface and differential scattering cross sections of He-HI complex. Acta Physica Sinica, 2007, 56(8): 4441-4447. doi: 10.7498/aps.56.4441
    [18] Chen Yu-Hong, Zhang Cai-Rong, Ma Jun. Density functional theory study on the structure and properties of MgmBn(m=1,2;n=1—4) clusters. Acta Physica Sinica, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [19] Han Hui-Xian, Peng Qian, Wen Zhen-Yi, Wang Yu-Bin. Local potential energy surface and vibration analysis for the S2O molecule. Acta Physica Sinica, 2005, 54(1): 78-84. doi: 10.7498/aps.54.78
    [20] Wang Xiao-Yan, Ding Shi-Liang. Constructing potential energy surface of tetratomic molecules using Lie algebra. Acta Physica Sinica, 2004, 53(2): 423-426. doi: 10.7498/aps.53.423
Metrics
  • Abstract views:  5908
  • PDF Downloads:  214
  • Cited By: 0
Publishing process
  • Received Date:  11 February 2015
  • Accepted Date:  21 March 2015
  • Published Online:  05 November 2015

/

返回文章
返回
Baidu
map