搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

几种典型含能材料光激发解离的含时密度泛函理论研究

赵嘉琳 程开 于雪克 赵纪军 苏艳

引用本文:
Citation:

几种典型含能材料光激发解离的含时密度泛函理论研究

赵嘉琳, 程开, 于雪克, 赵纪军, 苏艳

Theoretical research of time-dependent density functional on initiated photo-dissociation of some typical energetic materials at excited state

Zhao Jia-Lin, Cheng Kai, Yu Xue-Ke, Zhao Ji-Jun, Su Yan
PDF
HTML
导出引用
  • 硝基类炸药作为主要的含能材料在极端条件下引爆可释放巨大能量, 深入研究硝基类炸药光激发后的载流子动力学过程, 将有助于揭示含能材料复杂的超快爆轰物理机制. 本文利用含时密度泛函理论和分子动力学计算方法, 研究了典型的硝基类炸药, 包括硝基甲烷(NM)、环三亚甲基三硝胺(RDX)和三氨基三硝基苯(TATB)分子的光激发解离过程, 观察了含能分子瞬时的结构变化和分子能级随时间的演化过程. 结果显示, 含能分子在200 fs范围内发生解离, 激发载流子的能量通过电声耦合以热能的形式传输给原子, 从而导致C—H, N—H或N—N化学键的断裂, 从甲基、亚甲基或氨基中解离出的氢原子会与近邻的硝基形成新的基团. 在这一过程中, 激发电子和空穴附近的能级也随着时间演化发生明显变化, 表明电子耦合也在解离过程中发挥了作用. 我们的研究加深了含能材料激发态结构弛豫和激发能级演化的认识, 并对光诱导反应及含能材料激光点火初始步骤提供了新的理解.
    Nitro explosive is a main type of energetic material which can release a large amount of energy when detonated under extreme conditions. Further study of the excited state dynamics of photo-induced nitro explosive can provide an effective method to understand the complex process of ultrafast detonation physics. In this paper, the initial step of photodissociation at the first excited electron state of some typical nitro explosives including nitromethane (NM), cyclotrimethylenetrinitramine (RDX) and triaminotrinitrobenzene (TATB) is studied using the time-dependent density functional theory and the molecular dynamic method. The transient structures of energetic molecules and time evolutions of excited energy levels are observed. It is found that the structural relaxation of energetic molecules occurs immediately after the electronic excitation, and the entire photoexcitation process comes into being within a range of 200 fs. At the same time, the positions of molecular energy levels change to various degrees with the oscillations of different frequencies, such as the overlap between HOMO and LUMO, which is related to the obvious change of molecular configuration, indicating that the energy of excited carriers transfers to atoms in the form of heat through electron-phonon coupling, and the energy is redistributed through vibration relaxation in the initial stage of photodissociation which causes the chemical bonds of C—H, N—N and N—N to rupture, and the hydrogen atoms dissociated from methyl, methylene or amino groups, and the nearest nitro group to form some new intermediate states. In this process, the energy levels near the excited electron and hole energy also change significantly with time, suggesting that the coupling between electron and electron also plays a role in the dissociation process. Comparing with NM and RDX, the evolution of the excited energy level of TATB has obvious lower-frequency (phonon frequency) oscillations, showing that the coupling between electronic state and phonon of TATB is weak and thus makes it more difficult to dissociate. Our study can deepen the understanding of the structural relaxation of excited states and the time evolution of excitation energy levels in energetic materials, and provide a new understanding of the photoinduced reaction and the initial steps of laser ignition in energetic materials.
      通信作者: 程开, chengkai_xiyou@163.com ; 苏艳, su.yan@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12004303)、国防基础科研科学挑战专题(批准号: TZ2016001)和中央高校基本科研业务费专项资金(批准号: DUT20ZD207)资助的课题
      Corresponding author: Cheng Kai, chengkai_xiyou@163.com ; Su Yan, su.yan@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12004303), the Challenge Project of Basic National Defense Research, China (Grant No. TZ2016001), and the Fundamental Research Funds for the Central Universities, China (Grant No. DUT20ZD207)
    [1]

    Field J E 1992 Acc. Chem. Res. 25 489Google Scholar

    [2]

    Zhang S Q, Wang Y Q, Zheng X M 2006 Acta Phys-Chim Sin. 22 1489Google Scholar

    [3]

    Bhattacharya A, Guo Y, Bernstein E R 2010 Acc. Chem. Res. 43 1476Google Scholar

    [4]

    Fang X, McLuckie W G 2015 J. Hazard. Mater. 285 375Google Scholar

    [5]

    Gruzdkov Y A, Gupta Y M 1998 J. Phys. Chem. A 102 8325Google Scholar

    [6]

    Aduev B P, Nurmukhametov D R, Belokurov G M, Nelyubina N V, Kalenskii A V, Aluker N L 2017 Russ. J. Phys. Chem. B 11 460Google Scholar

    [7]

    Jordan M J T, Kable S H 2012 Science 335 1054Google Scholar

    [8]

    Spighi G, Gaveau MA, Mestdagh JM, Poisson L, Soep B 2014 Physi. Chem. Chem. Phys. 16 9610Google Scholar

    [9]

    Parada G A, Markle T F, Glover S D, Hammarstrom L, Ott S, Zietz B 2015 Chem. Eur. J 21 6362Google Scholar

    [10]

    Zhang W, Sang J, Cheng J, Ge S, Yuan S, Lo G V, Dou Y 2018 Molecules 23 1593Google Scholar

    [11]

    Rehwoldt M C, Wang H, Kline D J, Wu T, Eckman N, Wang P, Agrawal N R, Zachariah M R 2020 Combust. Flame 211 260Google Scholar

    [12]

    Cabalo J, Sausa R 2005 Appl. Optics 44 1084Google Scholar

    [13]

    Mattos E C, Diniz M F, Nakamura N M, Dutra R d C L 2009 J. Aerosp. Technol. Manag. 1 167Google Scholar

    [14]

    Rom N, Zybin S V, van Duin A C T, Goddard W A, III, Zeiri Y, Katz G, Kosloff R 2011 J. Phys. Chem. A 115 10181Google Scholar

    [15]

    Blais N C, Engelke R, Sheffield S A 1997 J. Phys. Chem. A 101 8285Google Scholar

    [16]

    Citroni M, Bini R, Pagliai M, Cardini G, Schettino V 2010 J. Phys. Chem. B 114 9420Google Scholar

    [17]

    Kuklja M M, Aduev B P, Aluker E D, Krasheninin V I, Krechetov A G, Mitrofanov A Y 2001 J. Appl. Phys. 89 4156Google Scholar

    [18]

    Guo Y Q, Greenfield M, Bhattacharya A, Bernstein E R 2007 J. Chem. Phys. 127 154301Google Scholar

    [19]

    Owens F J, Sharma J 1980 J. Appl. Phys. 51 1494Google Scholar

    [20]

    Gares K L, Bykov S V, Brinzer T, Asher S A 2015 Appl. Spectrosc. 69 545Google Scholar

    [21]

    Tang T B, Chaudhri M M, Rees C S, Mullock S J 1987 J. Mater. Sci. 22 1037Google Scholar

    [22]

    Williams D L, Timmons J C, Woodyard J D, Rainwater K A, Lightfoot J M, Richardson B R, Burgess C E, Heh J L 2003 J. Phys. Chem. A 107 9491Google Scholar

    [23]

    Firsich D W 1984 J. Hazard. Mater. 9 133Google Scholar

    [24]

    Britt A D, Moniz W B, Chingas G C, Moore D W, Heller C A, Ko C L 1981 Propell. Explos. 6 94Google Scholar

    [25]

    Glascoe E A, Zaug J M, Armstrong M R, Crowhurst J C, Grant C D, Fried L E 2009 J. Phys. Chem. A 113 5881Google Scholar

    [26]

    Runge E, Gross E K U 1984 Phys. Rev. Lett. 52 997Google Scholar

    [27]

    Theilhaber J 1992 Phys. Rev. B 46 12990Google Scholar

    [28]

    Castro A, Appel H, Oliveira M, Rozzi C A, Andrade X, Lorenzen F, Marques M A L, Gross E K U, Rubio A 2006 Phys. Status Solidi. B 243 2465Google Scholar

    [29]

    Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Dos Santos D A, Bredas J L, Logdlund M, Salaneck W R 1999 Nature 397 121Google Scholar

    [30]

    Polyak I, Hutton L, Crespo-Otero R, Barbatt M, Knowles P J 2019 J. Chem. theory Comput. 15 3929Google Scholar

    [31]

    Kolesov G, Granas O, Hoyt R, Vinichenko D, Kaxiras E 2016 J. Chem. theory Comput. 12 466Google Scholar

    [32]

    Nelson T, Fernandez-Alberti S, Chernyak V, Roitberg A E, Tretiak S 2011 J. Phys. Chem. B 115 5402Google Scholar

    [33]

    Ghosh J, Gajapathy H, Konar A, Narasimhaiah G M, Bhattacharya A 2017 J. Chem. Phys. 147 204302Google Scholar

    [34]

    Myers T W, Bjorgaard J A, Brown K E, Chavez D E, Hanson S K, Scharff R J, Tretiak S, Veauthier J M 2016 J. Am. Chem. Soc. 138 4685Google Scholar

    [35]

    Soler J M, Artacho E, Gale J D, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D 2002 J. Phys-Condens. Mat. 14 2745Google Scholar

    [36]

    Sugino O, Miyamoto Y 1999 Phys. Rev. B 59 2579Google Scholar

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [39]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 8861Google Scholar

    [40]

    Gorse D, Cavagnat D, Pesquer M, Lapouge C 1993 J. Phys. Chem. 97 4262Google Scholar

    [41]

    Choi C S, Mapes J E, Prince E 1972 Acta Crystallogr. B 28 1357Google Scholar

    [42]

    Cady H H, Larson A C 1965 Acta Crystallogr. 18 485Google Scholar

    [43]

    Zhong M, Liu Q-J, Qin H, Jiao Z, Zhao F, Shang H-L, Liu F-S, Liu Z-T 2017 Eur. Phys. J. B 90 115Google Scholar

    [44]

    Fan J, Su Y, Zheng Z, Zhang Q, Zhao J 2019 J. Raman Spectrosc. 50 889Google Scholar

    [45]

    Su Y, Fan J, Zheng Z, Zhao J, Song H 2018 Chin. Phys. B 27 056401Google Scholar

    [46]

    Flicker W M, Mosher O A, Kuppermann A 1979 Chem. Phys. Lett. 60 518Google Scholar

    [47]

    Whitley V H 2006 AIP Conf. Proc. 845 1357Google Scholar

    [48]

    Kakar S, Nelson A J, Treusch R, Heske C, van Buuren T, Jimenez I, Pagoria P, Terminello L J 2000 Phys. Rev. B 62 15666Google Scholar

    [49]

    Zhang W, Shen R, Ye Y, Wu L, Hu Y, Zhu P 2014 Spectrosc. Lett. 47 611Google Scholar

    [50]

    Nelson T, Bjorgaard J, Greenfield M, Bolme C, Brown K, McGrane S, Scharff R J, Tretiak S 2016 J. Phys. Chem. A 120 519Google Scholar

  • 图 1  基态含能分子结构示意图 (a) 硝基甲烷(NM); (b) 环三亚甲基三硝胺(RDX); (c) 三氨基三硝基苯(TATB); 其中蓝色为N原子, 红色为O原子, 棕色为C原子, 白色为H原子

    Fig. 1.  Structure diagrams of (a) nitromethane (NM); (b) cyclotrimethylenetrinitramine (RDX); (c) triaminotrinitrobenzene (TATB) at ground state. Blue ball is N atom, red ball is O atom, brown ball is C atom, and white ball is H atom.

    图 2  三种含能分子的基态轨道能级排布及最高占据态轨道(HOMO)与最低非占据态轨道(LUMO)的电荷密度分布图 (a) 硝基甲烷(NM); (b) 环三亚甲基三硝胺(RDX); (c) 三氨基三硝基苯(TATB)

    Fig. 2.  The ground state molecular orbital (MO) energy levels and charge density of the highest occupied state orbitals and the lowest unoccupied state orbitals of (a) nitromethane (NM), (b) cyclotrimethylenetrinitramine (RDX), (c) triaminotrinitrobenzene (TATB).

    图 3  (a) 硝基甲烷(NM); (b) 环三亚甲基三硝胺(RDX); (c) 三氨基三硝基苯(TATB)在300 K时光致激发后分子结构随时间演化示意图

    Fig. 3.  Time evolution of molecular structure at 300 K for (a) nitromethane (NM); (b) cyclotrimethylenetrinitramine (RDX); (c) triaminotrinitrobenzene (TATB).

    图 4  分子部分键长随时间的演化 (a) 硝基甲烷(NM); (b) 环三亚甲基三硝胺(RDX); (c) 三氨基三硝基苯(TATB)

    Fig. 4.  Time evolution of bond lengths: (a) Nitromethane (NM); (b) cyclotrimethylenetrinitramine (RDX); (c) triaminotrinitrobenzene (TATB).

    图 5  分子轨道能级随时间的演化图 (a) 硝基甲烷(NM)分子HOMO, LUMO能级演化; (b), (c) 环三亚甲基三硝胺(RDX)分子HOMO, LUMO及其附近能级演化; (d) 三氨基三硝基苯(TATB)分子HOMO, LUMO能级演化. 绿色实线为最高占据态轨道, 对应激发空穴所在能级, 红色实线为最低非占据态轨道, 对应激发电子所在能级, 灰色实线为附近的其他能级

    Fig. 5.  Time evolution of excited energy level: (a) HOMO and LUMO of Nitromethane (NM); (b), (c) HOMO, LUMO and nearby orbitals of cyclotrimethylenetrinitramine (RDX); (d) HOMO and LUMO of Triaminotrinitrobenzene (TATB). Green solid line denotes the highest occupied molecular orbit corresponding to the excited hole, red solid line denotes the lowest unoccupied molecular orbit corresponding to the excited electron, gray solid lines denote other molecular orbit.

    表 1  三种含能分子基态的键长信息

    Table 1.  Bond lengths of energetic molecules at ground state

    NMC—NC—H1C—H2C—H3N—O1N—O2
    Length/ÅThis work1.5471.0961.0991.0991.1481.157
    Exp.[40]1.4811.0931.0921.0921.2231.224
    RDXC—NN1—N2N3—N4N5—N6C1—H1C1—H2
    Length/ÅThis work1.4431.4431.4711.4721.1821.183
    Exp.[41]1.4641.3511.3521.3981.0851.087
    TATBC—CC—NnitroC—NaminoN—ON—HO···H
    Length/ÅThis work1.4251.4361.3181.2161.0211.646
    Exp.[42]1.4411.4421.3161.2430.9251.780
    下载: 导出CSV

    表 2  300 K与0 K下RDX和TATB的键角对比

    Table 2.  Bond angles of RDX and TATB under 300 K and compared with 0 K

    RDXAngle/(°)TATBAngle/(°)
    0 K300 KChange0 K300 KChange
    α1113.7112.1–1.6θ118.6119.2+0.6
    α2114.8109.8–5.0 γ1179.9173.3–6.6
    δ140.6135.1–5.5γ2179.1174.4–4.7
    下载: 导出CSV
    Baidu
  • [1]

    Field J E 1992 Acc. Chem. Res. 25 489Google Scholar

    [2]

    Zhang S Q, Wang Y Q, Zheng X M 2006 Acta Phys-Chim Sin. 22 1489Google Scholar

    [3]

    Bhattacharya A, Guo Y, Bernstein E R 2010 Acc. Chem. Res. 43 1476Google Scholar

    [4]

    Fang X, McLuckie W G 2015 J. Hazard. Mater. 285 375Google Scholar

    [5]

    Gruzdkov Y A, Gupta Y M 1998 J. Phys. Chem. A 102 8325Google Scholar

    [6]

    Aduev B P, Nurmukhametov D R, Belokurov G M, Nelyubina N V, Kalenskii A V, Aluker N L 2017 Russ. J. Phys. Chem. B 11 460Google Scholar

    [7]

    Jordan M J T, Kable S H 2012 Science 335 1054Google Scholar

    [8]

    Spighi G, Gaveau MA, Mestdagh JM, Poisson L, Soep B 2014 Physi. Chem. Chem. Phys. 16 9610Google Scholar

    [9]

    Parada G A, Markle T F, Glover S D, Hammarstrom L, Ott S, Zietz B 2015 Chem. Eur. J 21 6362Google Scholar

    [10]

    Zhang W, Sang J, Cheng J, Ge S, Yuan S, Lo G V, Dou Y 2018 Molecules 23 1593Google Scholar

    [11]

    Rehwoldt M C, Wang H, Kline D J, Wu T, Eckman N, Wang P, Agrawal N R, Zachariah M R 2020 Combust. Flame 211 260Google Scholar

    [12]

    Cabalo J, Sausa R 2005 Appl. Optics 44 1084Google Scholar

    [13]

    Mattos E C, Diniz M F, Nakamura N M, Dutra R d C L 2009 J. Aerosp. Technol. Manag. 1 167Google Scholar

    [14]

    Rom N, Zybin S V, van Duin A C T, Goddard W A, III, Zeiri Y, Katz G, Kosloff R 2011 J. Phys. Chem. A 115 10181Google Scholar

    [15]

    Blais N C, Engelke R, Sheffield S A 1997 J. Phys. Chem. A 101 8285Google Scholar

    [16]

    Citroni M, Bini R, Pagliai M, Cardini G, Schettino V 2010 J. Phys. Chem. B 114 9420Google Scholar

    [17]

    Kuklja M M, Aduev B P, Aluker E D, Krasheninin V I, Krechetov A G, Mitrofanov A Y 2001 J. Appl. Phys. 89 4156Google Scholar

    [18]

    Guo Y Q, Greenfield M, Bhattacharya A, Bernstein E R 2007 J. Chem. Phys. 127 154301Google Scholar

    [19]

    Owens F J, Sharma J 1980 J. Appl. Phys. 51 1494Google Scholar

    [20]

    Gares K L, Bykov S V, Brinzer T, Asher S A 2015 Appl. Spectrosc. 69 545Google Scholar

    [21]

    Tang T B, Chaudhri M M, Rees C S, Mullock S J 1987 J. Mater. Sci. 22 1037Google Scholar

    [22]

    Williams D L, Timmons J C, Woodyard J D, Rainwater K A, Lightfoot J M, Richardson B R, Burgess C E, Heh J L 2003 J. Phys. Chem. A 107 9491Google Scholar

    [23]

    Firsich D W 1984 J. Hazard. Mater. 9 133Google Scholar

    [24]

    Britt A D, Moniz W B, Chingas G C, Moore D W, Heller C A, Ko C L 1981 Propell. Explos. 6 94Google Scholar

    [25]

    Glascoe E A, Zaug J M, Armstrong M R, Crowhurst J C, Grant C D, Fried L E 2009 J. Phys. Chem. A 113 5881Google Scholar

    [26]

    Runge E, Gross E K U 1984 Phys. Rev. Lett. 52 997Google Scholar

    [27]

    Theilhaber J 1992 Phys. Rev. B 46 12990Google Scholar

    [28]

    Castro A, Appel H, Oliveira M, Rozzi C A, Andrade X, Lorenzen F, Marques M A L, Gross E K U, Rubio A 2006 Phys. Status Solidi. B 243 2465Google Scholar

    [29]

    Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Dos Santos D A, Bredas J L, Logdlund M, Salaneck W R 1999 Nature 397 121Google Scholar

    [30]

    Polyak I, Hutton L, Crespo-Otero R, Barbatt M, Knowles P J 2019 J. Chem. theory Comput. 15 3929Google Scholar

    [31]

    Kolesov G, Granas O, Hoyt R, Vinichenko D, Kaxiras E 2016 J. Chem. theory Comput. 12 466Google Scholar

    [32]

    Nelson T, Fernandez-Alberti S, Chernyak V, Roitberg A E, Tretiak S 2011 J. Phys. Chem. B 115 5402Google Scholar

    [33]

    Ghosh J, Gajapathy H, Konar A, Narasimhaiah G M, Bhattacharya A 2017 J. Chem. Phys. 147 204302Google Scholar

    [34]

    Myers T W, Bjorgaard J A, Brown K E, Chavez D E, Hanson S K, Scharff R J, Tretiak S, Veauthier J M 2016 J. Am. Chem. Soc. 138 4685Google Scholar

    [35]

    Soler J M, Artacho E, Gale J D, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D 2002 J. Phys-Condens. Mat. 14 2745Google Scholar

    [36]

    Sugino O, Miyamoto Y 1999 Phys. Rev. B 59 2579Google Scholar

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [39]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 8861Google Scholar

    [40]

    Gorse D, Cavagnat D, Pesquer M, Lapouge C 1993 J. Phys. Chem. 97 4262Google Scholar

    [41]

    Choi C S, Mapes J E, Prince E 1972 Acta Crystallogr. B 28 1357Google Scholar

    [42]

    Cady H H, Larson A C 1965 Acta Crystallogr. 18 485Google Scholar

    [43]

    Zhong M, Liu Q-J, Qin H, Jiao Z, Zhao F, Shang H-L, Liu F-S, Liu Z-T 2017 Eur. Phys. J. B 90 115Google Scholar

    [44]

    Fan J, Su Y, Zheng Z, Zhang Q, Zhao J 2019 J. Raman Spectrosc. 50 889Google Scholar

    [45]

    Su Y, Fan J, Zheng Z, Zhao J, Song H 2018 Chin. Phys. B 27 056401Google Scholar

    [46]

    Flicker W M, Mosher O A, Kuppermann A 1979 Chem. Phys. Lett. 60 518Google Scholar

    [47]

    Whitley V H 2006 AIP Conf. Proc. 845 1357Google Scholar

    [48]

    Kakar S, Nelson A J, Treusch R, Heske C, van Buuren T, Jimenez I, Pagoria P, Terminello L J 2000 Phys. Rev. B 62 15666Google Scholar

    [49]

    Zhang W, Shen R, Ye Y, Wu L, Hu Y, Zhu P 2014 Spectrosc. Lett. 47 611Google Scholar

    [50]

    Nelson T, Bjorgaard J, Greenfield M, Bolme C, Brown K, McGrane S, Scharff R J, Tretiak S 2016 J. Phys. Chem. A 120 519Google Scholar

  • [1] 刘晓军, 杨雪. 基于激发态分子内质子转移过程的HBT-OMe分子检测HClO的荧光增强机理.  , 2023, 72(11): 113101. doi: 10.7498/aps.72.20222313
    [2] 汪小丽, 姚关心, 杨新艳, 秦正波, 郑贤锋, 崔执凤. 甲胺分子的紫外光解离动力学实验研究.  , 2018, 67(24): 243301. doi: 10.7498/aps.67.20181731
    [3] 颜逸辉, 刘玉柱, 丁鹏飞, 尹文怡. 利用速度成像技术研究碘乙烷多光子电离解离动力学.  , 2018, 67(20): 203301. doi: 10.7498/aps.67.20181468
    [4] 罗金龙, 凌丰姿, 李帅, 王艳梅, 张冰. 丁酮3s里德堡态的超快光解动力学研究.  , 2017, 66(2): 023301. doi: 10.7498/aps.66.023301
    [5] 秦朝朝, 黄燕, 彭玉峰. Br2分子在360610 nm的光解离动力学研究.  , 2017, 66(19): 193301. doi: 10.7498/aps.66.193301
    [6] 刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Gregor Knopp. 氟利昂F1110分子在飞秒激光脉冲作用下的多光子解离动力学.  , 2016, 65(11): 113301. doi: 10.7498/aps.65.113301
    [7] 刘玉柱, 陈云云, 郑改革, 金峰, Gregor Knopp. 氟利昂F113分子在飞秒激光作用下的多光子电离解离动力学.  , 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [8] 刘玉柱, 邓绪兰, 李帅, 管跃, 李静, 龙金友, 张冰. 氟利昂F114B2分子在飞秒紫外辐射下的解离动力学.  , 2016, 65(19): 193301. doi: 10.7498/aps.65.193301
    [9] 杨雪, 闫冰, 连科研, 丁大军. 1,2-环己二酮基态光解离反应的理论研究.  , 2015, 64(21): 213101. doi: 10.7498/aps.64.213101
    [10] 姚洪斌, 张季, 彭敏, 李文亮. H2+在强激光场中的解离及其量子调控的理论研究.  , 2014, 63(19): 198202. doi: 10.7498/aps.63.198202
    [11] 张来斌, 任廷琦. 扩环荧光碱基类似物x-腺嘌呤分子基态和激发态性质的理论研究.  , 2013, 62(10): 107102. doi: 10.7498/aps.62.107102
    [12] 李涛, 唐延林, 凌智钢, 李玉鹏, 隆正文. 外电场对对硝基氯苯分子结构与电子光谱影响的研究.  , 2013, 62(10): 103103. doi: 10.7498/aps.62.103103
    [13] 刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云. 离子速度成像系统校准及1,4-氯溴丁烷的紫外光解动力学.  , 2012, 61(19): 193301. doi: 10.7498/aps.61.193301
    [14] 李 瑞, 闫 冰, 赵书涛, 郭庆群, 连科研, 田传进, 潘守甫. CH3I分子的光解离的自旋-轨道从头计算.  , 2008, 57(7): 4130-4133. doi: 10.7498/aps.57.4130
    [15] 马 靖, 丁 蕾, 顾学军, 方 黎, 张为俊, 卫立夏, 王 晶, 杨 斌, 黄超群, 齐 飞. 三氯乙烯的真空紫外同步辐射光电离和光解离.  , 2006, 55(6): 2708-2713. doi: 10.7498/aps.55.2708
    [16] 黄超群, 卫立夏, 杨 斌, 杨 锐, 王思胜, 单晓斌, 齐 飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚. HFC-152a的同步辐射真空紫外光电离和光解离研究.  , 2006, 55(3): 1083-1088. doi: 10.7498/aps.55.1083
    [17] 王 仲, 张立敏, 王 峰, 李 江, 俞书勤. 281—332nm SO+2的光碎片激发谱研究.  , 2003, 52(12): 3027-3034. doi: 10.7498/aps.52.3027
    [18] 徐海峰, 刘世林, 马兴孝, 戴东旭, 解金春, 沙国河. 紫外波段CH2I2分子的光解离动力学研究.  , 2002, 51(2): 240-246. doi: 10.7498/aps.51.240
    [19] 张杰, 程丙英, 张道中, 王立华, 赵玉英, 王天眷. PbCl2分子的光解离.  , 1988, 37(5): 743-750. doi: 10.7498/aps.37.743
    [20] 林金谷, 苏阳, 单军, 杨君慧, 傅克坚. 紫外激光解离羰基铁生成超细粉末.  , 1987, 36(9): 1194-1198. doi: 10.7498/aps.36.1194
计量
  • 文章访问数:  5100
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-09
  • 修回日期:  2021-06-11
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-10-20

/

返回文章
返回
Baidu
map