Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Scanning tunneling microscopy research of Bi(110) thin films grown on NbSe2

Liu Jian-Yu Sun Hao-Hua Guan Dan-Dan Li Yao-Yi Wang Shi-Yong Liu Can-Hua Zheng Hao Jia Jin-Feng

Citation:

Scanning tunneling microscopy research of Bi(110) thin films grown on NbSe2

Liu Jian-Yu, Sun Hao-Hua, Guan Dan-Dan, Li Yao-Yi, Wang Shi-Yong, Liu Can-Hua, Zheng Hao, Jia Jin-Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Due to the novel physical properties induced by the strong spin orbit coupling and band inversions in the energy band structure, two-dimensional topological insulator has become a hot research point in the field of condensed matter physics and material science in recent years. Particularly, two-dimensional topological insulator may host exotic Majorana fermionic excitations in its edge state if superconductivity is introduced. Bi thin film with (111) orientation proves to be a two-dimensional topological insulator both in theory and in experiment. However, the topological nature of Bi thin film with (110) orientation has not yet been confirmed. In this study, high quality Bi(110) thin films are successfully prepared on superconductor NbSe2 surfaces, by the molecular beam epitaxial technology at ambient temperature and a low deposition rate (~24℃,~3 min/bilayer). The morphologies and electronic properties of the samples are studied by using scanning tunneling microscopy and spectroscopy. The experimental results reveal that the growth mode changes from bilayer (BL) in BL mode to monolayer (ML) in ML mode. Such transition takes place at a critical height of about 4 BLs. The mechanism of the growth mode transition is believed to be induced by the drastic variation of the surface energies of the thin films with different thickness values. Due to the large coverage of Bi(110) film on the NbSe2 substrate, it is almost impossible to find the exposed areas of NbSe2 substrate surface in practice. Especially on the sample with a large number of layers of Bi thin film, it is hard to directly determine the number of layers for each film. Hence, the critical thickness could be only estimated by controlling the deposition time and growth rate combining with the measurements of stage height of the film. The nearly identical local density of states wherever measured in the interior of a terrace or at the step edges can be discerned from the dI/dV spectra, which is thus hard to corroborate with non-trivial topology in either BL or ML thick Bi(110) film. The superconductivity induced by proximity effect from the superconducting substrate NbSe2 is also observed on the thin films. Through Bardeen-Cooper-Schrieffer type data fitting, the superconducting gap on the Bi thin film is estimated at about 0.5 meV. In addition, the quantum well state, which is often observed in thin films, is also revealed from the Bi(110) thin films, whose characteristic is equal energy spacing between peaks in dI/dV spectra. Noticeably, the spectral shapes of BL and ML are similar, and the local density of states from adjacent film layers displays an approximate πup phase shift.
      Corresponding author: Jia Jin-Feng, jfjia@sjtu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0301003, 2016YFA0300403), the National Natural Science Foundation of China (Grant Nos. 11521404, 11634009, U1632102, 11504230, 11674222, 11574202, 11674226, 11574201, U1632272, 11655002), and the Shanghai Committee of Science and Technology, China (Grant No. 16DZ2260200).
    [1]

    König M, Wiedmann S, Brne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [2]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [3]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802

    [4]

    Moore J E 2010 Nature 464 194

    [5]

    Qi X L, Zhang S C 2010 Phys. Today 63 33

    [6]

    Qi X L, Hughes T L, Zhang S C 2008 Phys. Rev. B 78 195424

    [7]

    Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167

    [8]

    Deutscher G 1971 Solid State Commun. 9 891

    [9]

    Majorana E 1937 Ⅱ Nuovo Cimento 14 171

    [10]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407

    [11]

    Murakami S 2006 Phys. Rev. Lett. 97 236805

    [12]

    Liu Z, Liu C X, Wu Y S, Duan W H, Liu Feng, Wu J 2011 Phys. Rev. Lett. 107 136805

    [13]

    Xiao S H, Wei D H, Jin X F 2012 Phys. Rev. Lett. 109 166805

    [14]

    Hirahara T, Bihlmayer G, Sakamoto Y, Yamada M, Miyazaki H, Kimura S, Blgel S, Hasegawa S 2011 Phys. Rev. Lett. 107 166801

    [15]

    Yang F, Miao L, Wang Z F, Yao M Y, Zhu F F, Song Y R, Wang M X, Xu J P, Fedorov A V, Sun Z, Zhang G B, Liu C H, Liu F, Qian D, Gao C L, Jia J F 2012 Phys. Rev. Lett. 109 016801

    [16]

    Sun H H, Wang M X, Zhu F F, Wang G Y, Ma H Y, Xu Z A, Liao Q, Lu Y H, Gao C L, Li Y Y, Liu C H, Qian D, Guan D D, Jia J F 2017 Nano Lett. 17 3035

    [17]

    Wada M, Murakami S, Freimuth F, Bihlmayer G 2011 Phys. Rev. B 83 121310

    [18]

    Lu Y H, Xu W H, Zeng M G, Yao G G, Shen L, Yao M, Luo Z Y, Pan F, Wu K 2015 Nano Lett. 15 80

    [19]

    Nagao T, Sadowski J T, Saito M, Yaginuma S, Fujikawa Y, Kogure T, Ohno T, Hasegawa Y, Hasegawa S, Sakurai T 2004 Phys. Rev. Lett. 93 105501

    [20]

    Bian G, Wang X, Miller T, Chiang T C, Kowalczyk P J, Mahapatra O, Brown S A 2014 Phys. Rev. B 90 195409

    [21]

    Yaginuma S, Nagao T, Sadowski J T, Saito M, Nagaoka K, Fujikawa Y, Sakurai T, Nakayama T 2007 Surf. Sci. 601 3593

    [22]

    Hatta S, Ohtsubo Y, Miyamoto S, Okuyama H, Aruga T 2009 Appl. Surf. Sci. 256 1252

    [23]

    Chiang T C 2000 Surf. Sci. Rep. 39 181

    [24]

    Paggel J J, Miller T, Chiang T C 1999 Science 283 1709

    [25]

    Zhang Y F, Jia J F, Han T Z, Tang Z, Shen Q T, Guo Y, Qiu Z Q, Xue Q K 2005 Phys. Rev. Lett. 95 096802

  • [1]

    König M, Wiedmann S, Brne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [2]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [3]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802

    [4]

    Moore J E 2010 Nature 464 194

    [5]

    Qi X L, Zhang S C 2010 Phys. Today 63 33

    [6]

    Qi X L, Hughes T L, Zhang S C 2008 Phys. Rev. B 78 195424

    [7]

    Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167

    [8]

    Deutscher G 1971 Solid State Commun. 9 891

    [9]

    Majorana E 1937 Ⅱ Nuovo Cimento 14 171

    [10]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407

    [11]

    Murakami S 2006 Phys. Rev. Lett. 97 236805

    [12]

    Liu Z, Liu C X, Wu Y S, Duan W H, Liu Feng, Wu J 2011 Phys. Rev. Lett. 107 136805

    [13]

    Xiao S H, Wei D H, Jin X F 2012 Phys. Rev. Lett. 109 166805

    [14]

    Hirahara T, Bihlmayer G, Sakamoto Y, Yamada M, Miyazaki H, Kimura S, Blgel S, Hasegawa S 2011 Phys. Rev. Lett. 107 166801

    [15]

    Yang F, Miao L, Wang Z F, Yao M Y, Zhu F F, Song Y R, Wang M X, Xu J P, Fedorov A V, Sun Z, Zhang G B, Liu C H, Liu F, Qian D, Gao C L, Jia J F 2012 Phys. Rev. Lett. 109 016801

    [16]

    Sun H H, Wang M X, Zhu F F, Wang G Y, Ma H Y, Xu Z A, Liao Q, Lu Y H, Gao C L, Li Y Y, Liu C H, Qian D, Guan D D, Jia J F 2017 Nano Lett. 17 3035

    [17]

    Wada M, Murakami S, Freimuth F, Bihlmayer G 2011 Phys. Rev. B 83 121310

    [18]

    Lu Y H, Xu W H, Zeng M G, Yao G G, Shen L, Yao M, Luo Z Y, Pan F, Wu K 2015 Nano Lett. 15 80

    [19]

    Nagao T, Sadowski J T, Saito M, Yaginuma S, Fujikawa Y, Kogure T, Ohno T, Hasegawa Y, Hasegawa S, Sakurai T 2004 Phys. Rev. Lett. 93 105501

    [20]

    Bian G, Wang X, Miller T, Chiang T C, Kowalczyk P J, Mahapatra O, Brown S A 2014 Phys. Rev. B 90 195409

    [21]

    Yaginuma S, Nagao T, Sadowski J T, Saito M, Nagaoka K, Fujikawa Y, Sakurai T, Nakayama T 2007 Surf. Sci. 601 3593

    [22]

    Hatta S, Ohtsubo Y, Miyamoto S, Okuyama H, Aruga T 2009 Appl. Surf. Sci. 256 1252

    [23]

    Chiang T C 2000 Surf. Sci. Rep. 39 181

    [24]

    Paggel J J, Miller T, Chiang T C 1999 Science 283 1709

    [25]

    Zhang Y F, Jia J F, Han T Z, Tang Z, Shen Q T, Guo Y, Qiu Z Q, Xue Q K 2005 Phys. Rev. Lett. 95 096802

  • [1] Li Jin-Fang, He Dong-Shan, Wang Yi-Ping. Modulation of topological phase transition and topological quantum state of magnon-photon in one-dimensional coupled cavity lattices. Acta Physica Sinica, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [2] Zheng Zhi-Yong, Chen Li-Jie, Xiang Lü, Wang He, Wang Yi-Ping. Modulation of topological phase transitions and topological quantum states by counter-rotating wave effect in one-dimensional superconducting microwave cavity lattice. Acta Physica Sinica, 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [3] Liu Chang, Wang Ya-Yu. Quantum transport phenomena in magnetic topological insulators. Acta Physica Sinica, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [4] Zhang Shuai, Song Feng-Qi. Research progress of quantum Hall effect in topological insulator. Acta Physica Sinica, 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [5] Wang Wei, Wang Yi-Ping. Modulation of topological phase transitions and topological quantum states in one-dimensional superconducting transmission line cavities lattice. Acta Physica Sinica, 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [6] Jia Liang-Guang, Liu Meng, Chen Yao-Yao, Zhang Yu, Wang Ye-Liang. Research progress of two-dimensional quantum spin Hall insulator in monolayer 1T'-WTe2. Acta Physica Sinica, 2022, 71(12): 127308. doi: 10.7498/aps.71.20220100
    [7] Wang Hang-Tian, Zhao Hai-Hui, Wen Liang-Gong, Wu Xiao-Jun, Nie Tian-Xiao, Zhao Wei-Sheng. High-performance THz emission: From topological insulator to topological spintronics. Acta Physica Sinica, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [8] Liu Chang, Liu Xiang-Rui. Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators. Acta Physica Sinica, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [9] Lu Man-Xin, Deng Wen-Ji. Topological invariants and edge states in one-dimensional two-tile lattices. Acta Physica Sinica, 2019, 68(12): 120301. doi: 10.7498/aps.68.20190214
    [10] Xu Nan, Zhang Yan. Topological edge states with skin effect in a trimerized non-Hermitian lattice. Acta Physica Sinica, 2019, 68(10): 104206. doi: 10.7498/aps.68.20190112
    [11] Gao Yi-Xuan,  Zhang Li-Zhi,  Zhang Yu-Yang,  Du Shi-Xuan. Research progress of two-dimensional organic topological insulators. Acta Physica Sinica, 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [12] Li Zhao-Guo, Zhang Shuai, Song Feng-Qi. Universal conductance fluctuations of topological insulators. Acta Physica Sinica, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [13] Guan Tong, Teng Jing, Wu Ke-Hui, Li Yong-Qing. Linear magnetoresistance in topological insulator (Bi0.5Sb0.5)2Te3 thin films. Acta Physica Sinica, 2015, 64(7): 077201. doi: 10.7498/aps.64.077201
    [14] Wang Qing, Sheng Li. Edge mode of InAs/GaSb quantum spin hall insulator in magnetic field. Acta Physica Sinica, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [15] Li Ping-Yuan, Chen Yong-Liang, Zhou Da-Jin, Chen Peng, Zhang Yong, Deng Shui-Quan, Cui Ya-Jing, Zhao Yong. Research of thermal expansion coefficient of topological insulator Bi2Te3. Acta Physica Sinica, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [16] Wei Pang, Li Kang, Feng Xiao, Ou Yun-Bo, Zhang Li-Guo, Wang Li-Li, He Ke, Ma Xu-Cun, Xue Qi-Kun. Growth of micro-devices of topological insulator thin films by molecular beam epitaxy on substrates pre-patterned with photolithography. Acta Physica Sinica, 2014, 63(2): 027303. doi: 10.7498/aps.63.027303
    [17] Chen Yan-Li, Peng Xiang-Yang, Yang Hong, Chang Sheng-Li, Zhang Kai-Wang, Zhong Jian-Xin. Stacking effects in topological insulator Bi2Se3:a first-principles study. Acta Physica Sinica, 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [18] Ding Yue, Shen Jie, Pang Yuan, Liu Guang-Tong, Fan Jie, Ji Zhong-Qing, Yang Chang-Li, Lü Li. Proximity-effect-induced superconductivity by granular Pb film on the surface of Bi2Te3 topological insulator. Acta Physica Sinica, 2013, 62(16): 167401. doi: 10.7498/aps.62.167401
    [19] Wang Huai-Qiang, Yang Yun-You, Ju Yan, Sheng Li, Xing Ding-Yu. Phase transition of ultrathin Bi2Se3 film sandwiched between ferromagnetic insulators. Acta Physica Sinica, 2013, 62(3): 037202. doi: 10.7498/aps.62.037202
    [20] Zeng Lun-Wu, Zhang Hao, Tang Zhong-Liang, Song Run-Xia. Electromagnetic wave scattering by a topological insulator prolate spheroid particle. Acta Physica Sinica, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
Metrics
  • Abstract views:  7385
  • PDF Downloads:  296
  • Cited By: 0
Publishing process
  • Received Date:  18 May 2018
  • Accepted Date:  31 May 2018
  • Published Online:  05 September 2018

/

返回文章
返回
Baidu
map