搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维SiSnF2中非磁性缺陷的影响和量子尺寸效应

刘文超 罗朝波 谢紫彤 彭向阳

引用本文:
Citation:

二维SiSnF2中非磁性缺陷的影响和量子尺寸效应

刘文超, 罗朝波, 谢紫彤, 彭向阳

The influence of non-magnetic defects and quantum size effects in two-dimensional SiSnF2

LIU Wenchao, LUO Chaobo, XIE Zitong, PENG Xiangyang
PDF
导出引用
  • 一般认为拓扑绝缘体对非磁性缺陷是高度免疫的,但是在器件应用的介观尺度上还缺乏验证。本文以SiSnF2单层条带为例,研究了不同缺陷浓度和尺寸对拓扑绝缘体电子输运的影响。第一性原理计算发现,SiSnF2在大于2%的拉伸应变下转变为拓扑绝缘体。用遗传算法拟合了有效紧束缚模型的参数,计算了拓扑绝缘体SiSnF2条带输运性质,发现边缘态也可能被随机空位缺陷破坏。对于长18.8 nm、宽8.2 nm的条带,在没有缺陷时,电流集中在条带边缘,电导为拓扑边缘态的理想值2 e2/h。当缺陷浓度为1%时,边缘电流已被明显扰动,但背散射仍受到有效抑制,电流绕过缺陷向前传输。当浓度为5%时,边缘电子经散射深入条带内部,与另一边缘发生散射,破坏了拓扑边缘态,使电导降为0.6 e2/h。因此,缺陷导致的由拓扑绝缘体到普通绝缘体的转变是渐变而不是突变。研究发现了明显的输运量子尺寸效应:增加条带宽度可减小边缘间电子散射,增强拓扑边缘态的稳定性;而增加长度会增大电子的局域性和边缘间电子散射,降低拓扑边缘态的稳定性。
    It is generally believed that topological insulators are highly immune to non-magnetic defects, but there is still a lack of verification at the mesoscopic scale of device applications. By using the first-principles calculations and scattering matrix methods, we take SiSnF2 monolayer ribbons as an illustration to study the effects of defects and sizes on the electron transport in topological insulators. First-principles calculations show that SiSnF2 transforms into a topological insulator under a tensile strain greater than 2%. The data of an effective tight-binding model was got by using a genetic algorithm to calculate the transport properties of the topological insulator SiSnF2 ribbons, and it was found that edge states can also be disrupted by random vacancy defects. The method for calculating local current is: $J_{a b}=i\left[\psi_b^{\dagger}\left(H_{a b}\right)^{\dagger} M \psi_a-\psi_a^{\dagger} M H_{a b} \psi_b\right]$ where $H_{a b}$ is the hopping matrix from lattice site b to lattice site a, $\psi_a\left(\psi_b\right)$ is the vector composed of the wave function components at lattice site a(b), $\psi_a^{\dagger}\left(\psi_b^{\dagger}\right)$ is the Hermitian conjugate of $\psi_a\left(\psi_b\right)$, and M is the density matrix.
    For a ribbon with a length of 18.8 nm and a width of 8.2 nm, which containing thousands of atoms, when there are no defects, the local current is concentrated at the edge of the ribbon, and the conductance is the ideal value of the topological edge state, 2 e2/h. When the defect concentration is 1%, the transport calculations show that the edge current has been appreciably disturbed, but the backscattering is still effectively suppressed, and the current bypasses the defect and still goes forward. When the concentration is 5%, the edge electrons are scattered deep into the ribbon and are scattered with the opposite edge, destroying the topological edge state and reducing the conductance to 0.6 e2/h. Therefore, the transformation from topological to normal insulator caused by defects happens gradually instead of abruptly. The study found an obvious transport quantum size effect: increasing the ribbon width can reduce electron scattering between edges and enhance the stability of topological edge states; while increasing the length will increase electron localization and electron scattering between edges, reducing the stability of topological edge states.
  • [1]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [2]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802

    [3]

    Moore J E 2010 Nature 464 194

    [4]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [5]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [6]

    Aslani Z, Sisakht E T, Fazileh F, Ghorbanfekr-Kalashami H, Peeters F M 2019 Phys. Rev. B 99 115421

    [7]

    Ezawa M 2015 J. Phys. Soc. Jpn. 84 121003

    [8]

    Cheng S G, Liu H, Jiang H, Sun Q F, Xie X C 2018 Phys. Rev. Lett. 121 156801

    [9]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438

    [10]

    Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [11]

    Knez I, Du R R, Sullivan G 2011 Phys. Rev. Lett. 107 136603

    [12]

    Chuang F C, Yao L Z, Huang Z Q, Liu Y T, Hsu C H, Das T, Lin H, Bansil A 2014 Nano Lett. 14 2505

    [13]

    Ma Y, Kou L, Du A, Heine T 2015 Nano Res. 8 3412

    [14]

    Teshome T, Datta A 2018 ACS Omega 3 1

    [15]

    Liu W C, Luo C B, Peng X Y 2024 J. Phys.: Condens. Mat. 36 165401

    [16]

    Zhang S J, Ji W X, Zhang C W, Li S S, Li P, Ren M J, Wang P J 2016 RSC Adv. 6 79452

    [17]

    Li S S, Ji W X, Zhang C W, Li P, Wang P j 2016 J. Mater. Chem. C 4 2243

    [18]

    Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T, Ciraci S 2009 Phys. Rev. B 80 155453

    [19]

    Wang Y, Ding Y 2016 Appl. Surf. Sci. 382 1

    [20]

    Li T C, Lu S P 2008 Phys. Rev. B 77 085408

    [21]

    Li Y, Liu Y, Zhang Q, Zhao C, Sun J, Li Y, Liu Y, Ning P, Liu Y, Xing H 2025 Physica B: Condens. Mat. 698 416757

    [22]

    Pineda-Medina R, Vinck-Posada H, Herrera W J 2025 Solid State Commun. 395 115729

    [23]

    Lü X L, Xie H 2022 New J. Phys. 24 033010

    [24]

    Li S, Liu T, Liu C, Wang Y, Lu H Z, Xie X 2024 Natl. Sci. Rev. 11 296

    [25]

    Huang L, He L, Zhang W, Zhang H, Liu D, Feng X, Liu F, Cui K, Huang Y, Zhang W 2024 Nat. Commun. 15 1647

    [26]

    Liu C, Wang Y Y 2023 Acta Phys. Sin. 72 177301(in Chinese) [刘畅,王亚愚2023 72 177301]

    [27]

    Slater J C, Koster G F 1954 Phys. Rev. 94 1498

    [28]

    Kresse G, Furthmüller J 1996 Comp. Mater. Sci. 6 15

    [29]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [31]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [32]

    Moldovan D https://zenodo.org/records/56818[2024-10-27]

    [33]

    Groth C W, Wimmer M, Akhmerov A R, Waintal X 2014 New J. Phys. 16 063065

    [34]

    Imry Y, Landauer R 1999 Rev. Mod. Phys. 71 S306

    [35]

    Landauer R 1957 IBM J. Res. Dev. 1 223

    [36]

    Büttiker M 1986 Phys. Rev. Lett. 57 1761

    [37]

    Hsu H C, Kleftogiannis I, Guo G Y, Gopar V A 2018 J. Phys. Soc. Jpn. 87 034701

    [38]

    Ezawa M 2012 New J. Phys. 14 033003

    [39]

    Rezaei M, Sisakht E T, Fazileh F, Aslani Z, Peeters F M 2017 Phys. Rev. B 96 085441

    [40]

    Deylgat E, Tiwari S, Vandenberghe W G, Sorée B 2022 J. Appl. Phys. 131 235101

    [41]

    Vannucci L, Olsen T, Thygesen K S 2020 Phys. Rev. B 101 155404

  • [1] 李锦芳, 何东山, 王一平. 一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制.  , doi: 10.7498/aps.73.20231519
    [2] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量.  , doi: 10.7498/aps.72.20230020
    [3] 郑智勇, 陈立杰, 向吕, 王鹤, 王一平. 一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制.  , doi: 10.7498/aps.72.20231321
    [4] 张帅, 宋凤麒. 拓扑绝缘体中量子霍尔效应的研究进展.  , doi: 10.7498/aps.72.20230698
    [5] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象.  , doi: 10.7498/aps.72.20230690
    [6] 何安, 薛存. 缺陷调控临界温度梯度超导膜的磁通整流反转效应.  , doi: 10.7498/aps.71.20211157
    [7] 王伟, 王一平. 一维超导传输线腔晶格中的拓扑相变和拓扑量子态的调制.  , doi: 10.7498/aps.71.20220675
    [8] 贾亮广, 刘猛, 陈瑶瑶, 张钰, 王业亮. 单层二维量子自旋霍尔绝缘体1T'-WTe2研究进展.  , doi: 10.7498/aps.71.20220100
    [9] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜. 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子.  , doi: 10.7498/aps.69.20200680
    [10] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展.  , doi: 10.7498/aps.68.20191450
    [11] 敬玉梅, 黄少云, 吴金雄, 彭海琳, 徐洪起. 三维拓扑绝缘体antidot阵列结构中的磁致输运研究.  , doi: 10.7498/aps.67.20172346
    [12] 陈艳丽, 彭向阳, 杨红, 常胜利, 张凯旺, 钟建新. 拓扑绝缘体Bi2Se3中层堆垛效应的第一性原理研究.  , doi: 10.7498/aps.63.187303
    [13] 丁玥, 沈洁, 庞远, 刘广同, 樊洁, 姬忠庆, 杨昌黎, 吕力. Bi2Te3拓扑绝缘体表面颗粒化铅膜诱导的超导邻近效应.  , doi: 10.7498/aps.62.167401
    [14] 李建华, 曾祥华, 季正华, 胡益培, 陈宝, 范玉佩. ZnS掺Ag与Zn空位缺陷的电子结构和光学性质.  , doi: 10.7498/aps.60.057101
    [15] 段玲, 胡飞, 丁建文. 准一维纳米线电子输运的梯度无序效应.  , doi: 10.7498/aps.60.117201
    [16] 周凯, 李辉, 王柱. 正电子湮没谱和光致发光谱研究掺锌GaSb质子辐照缺陷.  , doi: 10.7498/aps.59.5116
    [17] 唐黎明, 王玲玲, 王 宁, 严 敏. 磁场下非对称T型量子波导的电子输运行为.  , doi: 10.7498/aps.57.3203
    [18] 陈志权, 河裾厚男. He离子注入ZnO中缺陷形成的慢正电子束研究.  , doi: 10.7498/aps.55.4353
    [19] 高 峰, 王 艳, 游开明, 姚凌江. 磁场对四端量子波导中电子输运性质的影响.  , doi: 10.7498/aps.55.2966
    [20] 李鹏飞, 颜晓红, 王如志. 缺陷对准周期磁超晶格输运性质的影响.  , doi: 10.7498/aps.51.2139
计量
  • 文章访问数:  82
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-09

/

返回文章
返回
Baidu
map