搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拓扑绝缘体Bi2Se3中层堆垛效应的第一性原理研究

陈艳丽 彭向阳 杨红 常胜利 张凯旺 钟建新

引用本文:
Citation:

拓扑绝缘体Bi2Se3中层堆垛效应的第一性原理研究

陈艳丽, 彭向阳, 杨红, 常胜利, 张凯旺, 钟建新

Stacking effects in topological insulator Bi2Se3:a first-principles study

Chen Yan-Li, Peng Xiang-Yang, Yang Hong, Chang Sheng-Li, Zhang Kai-Wang, Zhong Jian-Xin
PDF
导出引用
  • 运用第一性原理方法,研究了拓扑绝缘体Bi2Se3块体和薄膜中的层堆垛对其结构、电子态、拓扑态和自旋劈裂的影响. 发现不同的堆垛会引起Bi2Se3层间的相互作用,改变系统的中心对称性. 块体的ABC和AAA堆垛都具有中心对称性和相似的能带结构. ABA堆垛破坏了体系的中心对称性,能带发生很大改变,并且产生了很大的能带自旋劈裂. 用能带反转的方法判定体系的拓扑相,在不同堆垛的Bi2Se3块体中,考虑自旋轨道耦合时都发生了能带反转,因而具有不同堆垛的Bi2Se3 仍是拓扑绝缘体. 进一步研究了Bi2Se3薄膜中的堆垛效应,发现非中心对称的ABA堆垛在Bi2Se3薄膜中引起明显的自旋劈裂,并且提出和验证了用应变调控自旋劈裂的方法.
    By using first-principles method, we study the stacking effects on the electronic structure, topological phase and spin splitting in the bulk and film of topological insulator Bi2Se3. It is found that the different stackings can lead to different interlayer interactions and change the centrosymmetry of Bi2Se3. The centrosymmetric ABC and AAA stackings in bulk Bi2Se3 have similar band structures. ABA stacking breaks the centrosymmetry, giving rise to considerable changes of the band structure and large spin splitting. We further study the stacking effects in the film of Bi2Se3 and find that the non-centrosymmetric ABA stacking can induce large spin splitting in Bi2Se3 film. It is proposed and illustrated that the strain can tune the spin splitting effectively.
    • 基金项目: 国家自然科学基金(批准号:11274265,11464013,11074211,11274262)、国家重点基础研究发展计划(批准号:2012CB921303)、湖南省政府芙蓉学者计划和湖南省教育厅科学研究重点项目(批准号:10A118)、吉首大学引进人才项目(批准号:jsdxrcyjkyxm201309)和湖南省教育厅一般项目(批准号:14C0939)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274265, 11464013, 11074211, 11274262), the National Basic Research Program of China (Grant No. 2012CB921303), the Furong Scholar Program of Hunan Provincial Government and the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 10A118), the Talents Recruitment Program of Jishou University, China (Grant No. jsdxrcyjkyxm201309) and the Education Department of Hunan Province, China (Grant No. 14C0939).
    [1]

    Kane C, Mele E 2005 Phys. Rev. Lett. 95 146802

    [2]

    Bernevig B, Hughes T, Zhang S C 2006 Science 314 1757

    [3]

    Fu L, Kane C, Mele E 2007 Phys. Rev. Lett. 98 106803

    [4]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [5]

    Hasan M, Kane C 2010 Rev. Mod. Phys. 82 3045

    [6]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438

    [7]

    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nat. Phys. 5 398

    [8]

    Yu R, Zhang W, Weng H M, Dai X, Fang Z 2010 Physics 39 618(in Chinese)[余睿, 张薇, 翁红明, 戴希, 方忠 2010 物理 39 618]

    [9]

    Ding Y, Shen J, Pang Y, Liu G T, Fan J, Ji Z Q, Yang C L, L L 2013 Acta Phys. Sin. 62 167401(in Chinese)[丁玥, 沈洁, 庞远, 刘广同, 樊洁, 姬忠庆, 杨昌黎, 吕力 2013 62 167401]

    [10]

    Wang X T, Dai X F, Jia H Y, Wang L Y, Liu R, Li Y, Liu X C, Zhang X M, Wang W H, Wu G H, Liu G D 2014 Acta Phys. Sin. 63 023101(in Chinese)[王啸天, 代学芳, 贾红英, 王立英, 刘然, 李勇, 刘笑闯, 张小明, 王文洪, 吴光恒, 刘国栋 2014 63 023101]

    [11]

    Zhang Y, He K, Chang C, Song C, Wang L, Chen X, Jia J, Fang Z, Dai X, Shan W, Shen S, Niu Q, Qi X, Zhang S, Ma X, Xue Q K 2010 Nat. Phys. 6 584

    [12]

    Liu Y M, Shao H H, Zhou X Y, Zhou G H 2013 Chin. Phys. B 22 077310

    [13]

    Jia Y F, Guo H M, Qin J H, Chen Z Y, Feng S P 2013 Chin. Phys. B 22 090308

    [14]

    Li X G, Zhang G F, Wu G F, Chen H, Culcer D, Zhang Z Y 2013 Chin. Phys. B 22 097306

    [15]

    He K, Ma X C, Chen X, Lu L, Wang Y Y, Xue Q K 2013 Chin. Phys. B 22 067305

    [16]

    Bao W, Jing L, Velasco J, Lee Y, Liu G, Tran D, Standley B, Aykol M, Cronin S, Smirnov D, Koshino M, McCann E, Bockrath M, Lau C 2011 Nat. Phys. 7 948

    [17]

    Ishizaka K, Bahramy M, Murakawa H, Sakano M, Shimojima T, Sonobe T, Koizumi K, Shin S, Miyahara H, Kimura A, Miyamoto K, Okuda T, Namatame H, Taniguchi M, Arita R, NagaosaKaneko Y, Onose Y, Tokura Y 2011 Nat.Mater. 10 521

    [18]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [19]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [20]

    Perdew J, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [21]

    Blöchl P 1994 Phys. Rev. B 50 17953

    [22]

    Liu W L, Peng X Y, Wei X L, Yang H, Stocks G M, Zhong J X 2013 Phys. Rev. B 87 205315

    [23]

    Bianchi M, Hatch R C, Mi J, Iversen B B, Hofmann P 2011 Phys. Rev. Lett. 107 086802

    [24]

    King P D C, Hatch R C, Bianchi M, Ovsyannikov R, Lupulescu C, Landolt G, Slomski B, Dil J H, Guan D, Mi J L, Rienks D L, Fink J, Lindblad A, Svensson S, Bao S, Balakrishnan G, Iversen B B, Osterwalder J, Eberhardt W, Baumberger F, Hofmann P 2011 Phys. Rev. Lett. 107 096802

    [25]

    Yang H, Peng X Y, Wei X L, Liu W L, Zhu W G, Xiao D, Stocks G M, Zhong J X 2012 Phys. Rev. B 86 155317

    [26]

    Sakamoto K, Kakuta H, Sugawara K, Miyamoto K, Kimura A, Kuzumaki T, Ueno N, Annese E, Fujii J, Kodama A, Shishidou T, Namatame H, Taniguchi M, Sato T, Takahashi T, Oguchi T 2009 Phys. Rev. Lett. 103 56801

    [27]

    Liu W L, Peng X Y, Tang C, Sun L Z, Zhang K W, Stocks G M, Zhong J X 2011 Phys. Rev. B 84 245105

  • [1]

    Kane C, Mele E 2005 Phys. Rev. Lett. 95 146802

    [2]

    Bernevig B, Hughes T, Zhang S C 2006 Science 314 1757

    [3]

    Fu L, Kane C, Mele E 2007 Phys. Rev. Lett. 98 106803

    [4]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [5]

    Hasan M, Kane C 2010 Rev. Mod. Phys. 82 3045

    [6]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438

    [7]

    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nat. Phys. 5 398

    [8]

    Yu R, Zhang W, Weng H M, Dai X, Fang Z 2010 Physics 39 618(in Chinese)[余睿, 张薇, 翁红明, 戴希, 方忠 2010 物理 39 618]

    [9]

    Ding Y, Shen J, Pang Y, Liu G T, Fan J, Ji Z Q, Yang C L, L L 2013 Acta Phys. Sin. 62 167401(in Chinese)[丁玥, 沈洁, 庞远, 刘广同, 樊洁, 姬忠庆, 杨昌黎, 吕力 2013 62 167401]

    [10]

    Wang X T, Dai X F, Jia H Y, Wang L Y, Liu R, Li Y, Liu X C, Zhang X M, Wang W H, Wu G H, Liu G D 2014 Acta Phys. Sin. 63 023101(in Chinese)[王啸天, 代学芳, 贾红英, 王立英, 刘然, 李勇, 刘笑闯, 张小明, 王文洪, 吴光恒, 刘国栋 2014 63 023101]

    [11]

    Zhang Y, He K, Chang C, Song C, Wang L, Chen X, Jia J, Fang Z, Dai X, Shan W, Shen S, Niu Q, Qi X, Zhang S, Ma X, Xue Q K 2010 Nat. Phys. 6 584

    [12]

    Liu Y M, Shao H H, Zhou X Y, Zhou G H 2013 Chin. Phys. B 22 077310

    [13]

    Jia Y F, Guo H M, Qin J H, Chen Z Y, Feng S P 2013 Chin. Phys. B 22 090308

    [14]

    Li X G, Zhang G F, Wu G F, Chen H, Culcer D, Zhang Z Y 2013 Chin. Phys. B 22 097306

    [15]

    He K, Ma X C, Chen X, Lu L, Wang Y Y, Xue Q K 2013 Chin. Phys. B 22 067305

    [16]

    Bao W, Jing L, Velasco J, Lee Y, Liu G, Tran D, Standley B, Aykol M, Cronin S, Smirnov D, Koshino M, McCann E, Bockrath M, Lau C 2011 Nat. Phys. 7 948

    [17]

    Ishizaka K, Bahramy M, Murakawa H, Sakano M, Shimojima T, Sonobe T, Koizumi K, Shin S, Miyahara H, Kimura A, Miyamoto K, Okuda T, Namatame H, Taniguchi M, Arita R, NagaosaKaneko Y, Onose Y, Tokura Y 2011 Nat.Mater. 10 521

    [18]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [19]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [20]

    Perdew J, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [21]

    Blöchl P 1994 Phys. Rev. B 50 17953

    [22]

    Liu W L, Peng X Y, Wei X L, Yang H, Stocks G M, Zhong J X 2013 Phys. Rev. B 87 205315

    [23]

    Bianchi M, Hatch R C, Mi J, Iversen B B, Hofmann P 2011 Phys. Rev. Lett. 107 086802

    [24]

    King P D C, Hatch R C, Bianchi M, Ovsyannikov R, Lupulescu C, Landolt G, Slomski B, Dil J H, Guan D, Mi J L, Rienks D L, Fink J, Lindblad A, Svensson S, Bao S, Balakrishnan G, Iversen B B, Osterwalder J, Eberhardt W, Baumberger F, Hofmann P 2011 Phys. Rev. Lett. 107 096802

    [25]

    Yang H, Peng X Y, Wei X L, Liu W L, Zhu W G, Xiao D, Stocks G M, Zhong J X 2012 Phys. Rev. B 86 155317

    [26]

    Sakamoto K, Kakuta H, Sugawara K, Miyamoto K, Kimura A, Kuzumaki T, Ueno N, Annese E, Fujii J, Kodama A, Shishidou T, Namatame H, Taniguchi M, Sato T, Takahashi T, Oguchi T 2009 Phys. Rev. Lett. 103 56801

    [27]

    Liu W L, Peng X Y, Tang C, Sun L Z, Zhang K W, Stocks G M, Zhong J X 2011 Phys. Rev. B 84 245105

  • [1] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象.  , 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [2] 王志梅, 王虹, 薛乃涛, 成高艳. 自旋轨道耦合量子点系统中的量子相干.  , 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [3] 贾亮广, 刘猛, 陈瑶瑶, 张钰, 王业亮. 单层二维量子自旋霍尔绝缘体1T'-WTe2研究进展.  , 2022, 71(12): 127308. doi: 10.7498/aps.71.20220100
    [4] 李家锐, 王梓安, 徐彤彤, 张莲莲, 公卫江. 一维${\cal {PT}}$对称非厄米自旋轨道耦合Su-Schrieffer-Heeger模型的拓扑性质.  , 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [5] 薛海斌, 段志磊, 陈彬, 陈建宾, 邢丽丽. 自旋轨道耦合Su-Schrieffer-Heeger原子链系统的电子输运特性.  , 2021, 70(8): 087301. doi: 10.7498/aps.70.20201742
    [6] 陈星, 薛潇博, 张升康, 马余全, 费鹏, 姜元, 葛军. 两体相互作用费米系统在自旋轨道耦合和塞曼场中的基态转变.  , 2021, 70(8): 083401. doi: 10.7498/aps.70.20201456
    [7] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性.  , 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [8] 施婷婷, 汪六九, 王璟琨, 张威. 自旋轨道耦合量子气体中的一些新进展.  , 2020, 69(1): 016701. doi: 10.7498/aps.69.20191241
    [9] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜. 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子.  , 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [10] 李志强, 王月明. 一维谐振子束缚的自旋轨道耦合玻色气体.  , 2019, 68(17): 173201. doi: 10.7498/aps.68.20190143
    [11] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展.  , 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [12] 向天, 程亮, 齐静波. 拓扑绝缘体中的超快电荷自旋动力学.  , 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [13] 杨圆, 陈帅, 李小兵. Rashba自旋轨道耦合下square-octagon晶格的拓扑相变.  , 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [14] 张卫锋, 李春艳, 陈险峰, 黄长明, 叶芳伟. 时间反演对称性破缺系统中的拓扑零能模.  , 2017, 66(22): 220201. doi: 10.7498/aps.66.220201
    [15] 龚士静, 段纯刚. 金属表面Rashba自旋轨道耦合作用研究进展.  , 2015, 64(18): 187103. doi: 10.7498/aps.64.187103
    [16] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落.  , 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [17] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质.  , 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [18] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构.  , 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [19] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射.  , 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
    [20] 周青春, 王嘉赋, 徐荣青. 自旋-轨道耦合对磁性绝缘体磁光Kerr效应的影响.  , 2002, 51(7): 1639-1644. doi: 10.7498/aps.51.1639
计量
  • 文章访问数:  7416
  • PDF下载量:  1311
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-12
  • 修回日期:  2014-05-20
  • 刊出日期:  2014-09-05

/

返回文章
返回
Baidu
map