Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of interface structure on nanoindentation behavior of Cu/Ni multilayer film: Atomic scale simulation

Li Rui Liu Teng Chen Xiang Chen Si-Cong Fu Yi-Hong Liu Lin

Citation:

Influence of interface structure on nanoindentation behavior of Cu/Ni multilayer film: Atomic scale simulation

Li Rui, Liu Teng, Chen Xiang, Chen Si-Cong, Fu Yi-Hong, Liu Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The mechanical properties of metal multilayers change significantly when the modulation period decreases to a nanoscale. As is well known, the lattice misfit between Ni and Cu is~2.7%, it means that the coherent and semi-coherent interfaces can form between the Ni and Cu atomic layer. Hetero-twin interface Cu/Ni multilayer film with a modulation period of several nanometers and grown along the[111] direction is realized experimentally, and the mechanical properties change significantly due to the effect of interfaces. In this study, molecular dynamics simulations on Cu/Ni multilayers with coherent, coherent twin, semi-coherent, and semi-coherent twin interfaces under nanoindentation are carried out to study the deformation evolutions of different interfaces and the interactions between dislocation and interfaces. Furthermore, the influence of Cu/Ni interface on the mechanical property is investigated. The simulation results show that the different interface structures exhibit different strengthening and/or softening mechanisms at different indentation depths. The hardness values of the Cu/Ni multilayer films with four different interface structures are different, and the hardness of the coherent interface is larger than the semi-coherent interface's. The hardness values of the four interface structures reside between the pure Cu and pure Ni. For the coherent twin interface, with the increase of the modulation ratio, the strengthening effect of the twin interface is enhanced. The softening effect for the coherent interface is mainly attributed to the generation of parallel dislocations and their proliferation. While for the semi-coherent interface, the mismatched networks are formed at the Cu/Ni interfaces, the softening effect on the movable dislocation is mainly the repulsion of the mismatched network, while the strengthening effect on the movable dislocation is the hindrance of the mismatched dislocation network. The strengthening of the coherent twin interface is attributed to the limited effect of twin interface on the movable dislocation within the monolayer. Unlike the coherent twin interface, the strengthening effect of the semi-coherent twin interface is mainly due to the mutual repulsion between the arched dislocation, which is generated within the twin interface, and the mismatched network. Furthermore, the pinning effect of misfit dislocation network will impede the migration of twin interfaces and will also enhance the mechanical property of Cu/Ni multilayer film.
      Corresponding author: Chen Xiang, chenxiang@cqupt.edu.cn
    • Funds: Project supported by the Financial Support from Chongqing Science Fund for Distinguished Young Scholars, China (Grant No. cstc2014jcyjjq40004), the National Natural Science Foundation of China (Grant No. 11802047), the Key Foundation of Chongqing, China (Grant No. cstc2015jcjyBX0135), and the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant No. KJ1600446).
    [1]

    Misra A, Krug H 2001 Adv. Eng. Mater. 3 217

    [2]

    Li X, Bhushan B, Takashima K, Baek C W, Kim Y K 2003 Ultramicroscopy 97 481

    [3]

    Huang G S, Mei Y F 2016 Sci. China:Technol. 46 142 (in Chinese) [黄高山, 梅永丰 2016 中国科学:技术科学 46 142]

    [4]

    Huang G, Mei Y 2012 Adv. Mater. 24 2517

    [5]

    Clemens B M, Kung H, Barnett S A 1999 MRS Bull. 24 20

    [6]

    Misra A, Verdier M, Lu Y C, Kung H, Mitchell T E, Nastasi M 1998 Scripta Mater. 39 555

    [7]

    Koehler J S 1970 Phys. Rev. B 2 547

    [8]

    Embury J D, Hirth J P 1994 Acta Metall. Mater. 42 2051

    [9]

    Mckeown J, Misra A, Kung H, Hoagland R G, Nastasi M 2002 Scripta Mater. 46 593

    [10]

    Zhao Y, Peng X, Fu T, Sun R, Feng C, Wang Z 2015 Physica E 74 481

    [11]

    Yan X L, Coetsee E, Wang J Y, Swart H C, Terblans J J 2017 Appl. Surf. Sci. 411 73

    [12]

    Ren F, Zhao S, Li W, Tian B, Yin L, Volinsky A A 2011 Mater. Lett. 65 119

    [13]

    Zhu X Y, Liu X J, Zong R L, Zeng F, Pan F 2010 Mater. Sci. Eng. A 527 1243

    [14]

    Weng S, Ning H, Hu N, Yan C, Fu T, Peng X 2016 Mater. Des. 111 1

    [15]

    Fu T, Peng X, Xiang C, Weng S, Ning H, Li Q 2016 Sci. Reports 6 35665

    [16]

    Cheng D, Yan Z J, Yan L 2008 Acta Metall. Sin. 44 12 (in Chinese) [程东, 严志军, 严立 2008 金属学报 44 12]

    [17]

    Liu Y, Bufford D, Rios S, et al. 2012 J. Appl. Phys. 111 118

    [18]

    Yuan L, Jing P, Liu Y H, Xu Z H, Shan D B, Guo B 2014 Acta Phys. Sin. 63 016201 (in Chinese) [袁林, 敬鹏, 刘艳华, 徐振海, 单德彬, 郭斌 2014 63 016201]

    [19]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [20]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [21]

    Johnson R A 1989 Phys. Rev. B:Condens. Matter 39 12554

    [22]

    Zhou X W, Wadley H N G 1998 J. Appl. Phys. 84 2301

    [23]

    Chang W Y, Fang T H, Lin S J, Huang J J 2010 Mol. Simul. 36 815

    [24]

    Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 126802

    [25]

    Hepburn D J, Ackland G J 2008 Phys. Rev. B:Condens. Matter 78

    [26]

    Fu T, Peng X, Weng S, Zhao Y, Gao F, Deng L 2016 Mater. Sci. Eng. A 658 1

    [27]

    Stukowski A 2012 Modell. Simul. Mater. Sci. Eng. 20 045021

    [28]

    Zhu Y X, Li Z H, Huang M S, Liu Y 2015 Int. J. Plast. 72 168

    [29]

    Cheng D, Yan Z J, Yan L 2007 Thin Solid Films 515 3698

    [30]

    Huang C, Peng X H, Fu T, Chen X, Xiang H, Li Q 2017 Mater. Sci. Eng. A 700 609

  • [1]

    Misra A, Krug H 2001 Adv. Eng. Mater. 3 217

    [2]

    Li X, Bhushan B, Takashima K, Baek C W, Kim Y K 2003 Ultramicroscopy 97 481

    [3]

    Huang G S, Mei Y F 2016 Sci. China:Technol. 46 142 (in Chinese) [黄高山, 梅永丰 2016 中国科学:技术科学 46 142]

    [4]

    Huang G, Mei Y 2012 Adv. Mater. 24 2517

    [5]

    Clemens B M, Kung H, Barnett S A 1999 MRS Bull. 24 20

    [6]

    Misra A, Verdier M, Lu Y C, Kung H, Mitchell T E, Nastasi M 1998 Scripta Mater. 39 555

    [7]

    Koehler J S 1970 Phys. Rev. B 2 547

    [8]

    Embury J D, Hirth J P 1994 Acta Metall. Mater. 42 2051

    [9]

    Mckeown J, Misra A, Kung H, Hoagland R G, Nastasi M 2002 Scripta Mater. 46 593

    [10]

    Zhao Y, Peng X, Fu T, Sun R, Feng C, Wang Z 2015 Physica E 74 481

    [11]

    Yan X L, Coetsee E, Wang J Y, Swart H C, Terblans J J 2017 Appl. Surf. Sci. 411 73

    [12]

    Ren F, Zhao S, Li W, Tian B, Yin L, Volinsky A A 2011 Mater. Lett. 65 119

    [13]

    Zhu X Y, Liu X J, Zong R L, Zeng F, Pan F 2010 Mater. Sci. Eng. A 527 1243

    [14]

    Weng S, Ning H, Hu N, Yan C, Fu T, Peng X 2016 Mater. Des. 111 1

    [15]

    Fu T, Peng X, Xiang C, Weng S, Ning H, Li Q 2016 Sci. Reports 6 35665

    [16]

    Cheng D, Yan Z J, Yan L 2008 Acta Metall. Sin. 44 12 (in Chinese) [程东, 严志军, 严立 2008 金属学报 44 12]

    [17]

    Liu Y, Bufford D, Rios S, et al. 2012 J. Appl. Phys. 111 118

    [18]

    Yuan L, Jing P, Liu Y H, Xu Z H, Shan D B, Guo B 2014 Acta Phys. Sin. 63 016201 (in Chinese) [袁林, 敬鹏, 刘艳华, 徐振海, 单德彬, 郭斌 2014 63 016201]

    [19]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [20]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [21]

    Johnson R A 1989 Phys. Rev. B:Condens. Matter 39 12554

    [22]

    Zhou X W, Wadley H N G 1998 J. Appl. Phys. 84 2301

    [23]

    Chang W Y, Fang T H, Lin S J, Huang J J 2010 Mol. Simul. 36 815

    [24]

    Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 126802

    [25]

    Hepburn D J, Ackland G J 2008 Phys. Rev. B:Condens. Matter 78

    [26]

    Fu T, Peng X, Weng S, Zhao Y, Gao F, Deng L 2016 Mater. Sci. Eng. A 658 1

    [27]

    Stukowski A 2012 Modell. Simul. Mater. Sci. Eng. 20 045021

    [28]

    Zhu Y X, Li Z H, Huang M S, Liu Y 2015 Int. J. Plast. 72 168

    [29]

    Cheng D, Yan Z J, Yan L 2007 Thin Solid Films 515 3698

    [30]

    Huang C, Peng X H, Fu T, Chen X, Xiang H, Li Q 2017 Mater. Sci. Eng. A 700 609

  • [1] Chen Jing-Jing, Qiu Xiao-Lin, Li Ke, Zhou Dan, Yuan Jun-Jun. Mechanical performance analysis of nanocrystalline CoNiCrFeMn high entropy alloy: atomic simulation method. Acta Physica Sinica, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [2] Wang Sheng, Chen Jing-Jing, Weng Sheng-Bin. Investigation into movable dislocation evolution feature and strengthening effect for metal twin Al from atomic perspective. Acta Physica Sinica, 2022, 71(2): 029601. doi: 10.7498/aps.71.20211305
    [3] Sun Ying-Hui, Mu Cong-Yan, Jiang Wen-Gui, Zhou Liang, Wang Rong-Ming. Interface modulation and physical properties of heterostructure of metal nanoparticles and two-dimensional materials. Acta Physica Sinica, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [4] Reveal of Movable Dislocation Evolution Feature and Strengthening?Effect for Mental Twin Al?from Atomic Perspective. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211305
    [5] Mei Tao, Chen Zhan-Xiu, Yang Li, Zhu Hong-Man, Miao Rui-Can. Molecular dynamics study of interface thermal resistance in asymmetric nanochannel. Acta Physica Sinica, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [6] Chen Xian, Zhang Jing, Tang Zhao-Huan. Molecular dynamics study of release mechanism of stress at Si/Ge interface on a nanoscale. Acta Physica Sinica, 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [7] Zhang Zhong-Qiang, Li Chong, Liu Han-Lun, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning. Molecular dynamics study on permeability of water in graphene-carbon nanotube hybrid structure. Acta Physica Sinica, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [8] Hu Xing-Jian, Zheng Bai-Lin, Yang Biao, Yu Jin-Gui, He Peng-Fei, Yue Zhu-Feng. Influence of initial indentation point on nanoindentation of Ni-based single crystal line alloys. Acta Physica Sinica, 2015, 64(7): 076201. doi: 10.7498/aps.64.076201
    [9] Zhang Jin-Ping, Zhang Yang-Yang, Li Hui, Gao Jing-Xia, Cheng Xin-Lu. Molecular dynamics investigation of thermite reaction behavior of nanostructured Al/SiO2 system. Acta Physica Sinica, 2014, 63(8): 086401. doi: 10.7498/aps.63.086401
    [10] Zhang Cheng-Bin, Cheng Qi-Kun, Chen Yong-Ping. Molecular dynamics simulation on thermal conductivity of nanocomposites embedded with fractal structure. Acta Physica Sinica, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [11] Hu Xing-Jian, Zheng Bai-Lin, Hu Teng-Yue, Yang Biao, He Peng-Fei, Yue Zhu-Feng. Nanoindentation simulation of Ni-base single-crystal superalloy with the consideration of interface effect. Acta Physica Sinica, 2014, 63(17): 176201. doi: 10.7498/aps.63.176201
    [12] Tang Cui-Ming, Zhao Feng, Chen Xiao-Xu, Chen Hua-Jun, Cheng Xin-Lu. Thermite reaction of Al and α-Fe2O3 at the nanometer interface:ab initio molecular dynamics study. Acta Physica Sinica, 2013, 62(24): 247101. doi: 10.7498/aps.62.247101
    [13] Zhou Hua-Guang, Lin Xin, Wang Meng, Huang Wei-Dong. Calculation of crystal-melt interfacial free energy of Cu by molecular dynamics simulation. Acta Physica Sinica, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [14] He Zhi-Bing, Yang Zhi-Lin, Yan Jian-Cheng, Song Zhi-Min, Lu Tie-Cheng. Structure and mechanical property of glow discharge polymer. Acta Physica Sinica, 2011, 60(8): 086803. doi: 10.7498/aps.60.086803
    [15] Ma Wen, Zhu Wen-Jun, Chen Kai-Guo, Jing Fu-Qian. Molecular dynamics investigation of shock front in nanocrystalline aluminum: grain boundary effects. Acta Physica Sinica, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [16] Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei. Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface. Acta Physica Sinica, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [17] Zhou Guo-Rong, Gao Qiu-Ming. Freezing of Ni nanowires investigated by molecular dynamics simulation. Acta Physica Sinica, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [18] Zhang Lin, Wang Shao-Qing, Ye Heng-Qiang. Molecular dynamics study of the structure changes in a high-angle Cu grain boundary by heating and quenching. Acta Physica Sinica, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [19] Zhang Jian-Min, Xu Ke-Wei. The measurement of creep rate sensitivity of copper at room temperature by using nanoindentation. Acta Physica Sinica, 2004, 53(8): 2439-2443. doi: 10.7498/aps.53.2439
    [20] Liang Hai-Ge, Wang Xiu-Xi, Wu Heng-An, Wang Yu and. . Acta Physica Sinica, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
Metrics
  • Abstract views:  6743
  • PDF Downloads:  166
  • Cited By: 0
Publishing process
  • Received Date:  14 May 2018
  • Accepted Date:  12 July 2018
  • Published Online:  05 October 2018

/

返回文章
返回
Baidu
map