-
Friction resistance is the primary factor influencing the energy consumption and speed of underwater vehicles. Active air layer drag reduction is an active boundary layer control technique that reduces wall friction drag by injecting gas into the solid-liquid boundary layer. Compared to other drag reduction methods, which are often difficult to scale due to high costs and potential environmental concerns, this technology utilizes a simple auxiliary device. By employing inexpensive and environmentally friendly compressed air or combustion exhaust gases, it effectively lowers fluid resistance. Therefore, active drag reduction technology plays a crucial role in minimizing friction and enhancing overall performance. In this study, molecular dynamics simulations are used to construct a Couette flow shear model with gas injected at the boundaries of a nanochannel. This paper investigates the flow characteristics and boundary drag reduction of Couette flow in a nanochannel. The influence of gas injection on these characteristics is examined, along with the effects of surface wettability, shear velocity, and gas injection rate on boundary slip velocity and drag reduction. The results indicate that gas adsorption on the solid surface in the form of discrete bubbles hinders liquid flow and slip near the wall, leading to increased drag. However, increasing surface hydrophobicity, shear rate, and gas injection rate facilitates the transverse spreading of bubbles, reduces flow obstruction, and enhances slip. Additionally, these factors promote the formation of a continuous gas layer from discrete bubbles, further improving drag reduction. Once the gas layer forms, shear stress decreases significantly, and slip velocity varies with surface wettability, shear velocity, and gas injection rate. These findings provide a theoretical foundation for active gas layer drag reduction technology and the optimization of surface structures in ships and underwater vehicles.
-
Keywords:
- Active drag reduction /
- boundary slip /
- Couette flow /
- molecular dynamic
-
[1] Sindagi S, Vijayakumar R 2020Ships Offshore Struct. 16 968
[2] Fu Y F, Yuan C Q, Bai X Q 2017 Biosurf. Biotribol. 3 11
[3] Ceccio S L 2010Annu. Rev. Fluid Mech. 42 183
[4] Kang X X, Hu J X, Lin Z W, Pan D Y 2023Acta Mech. Sinica. 55 1087(in Chinese)[康晓宣,胡建新,林昭武,潘定一2023力学学报551087]
[5] Li F, Zhao G, Liu W X, Zhang S, Bi H S 2015Acta Phys. Sin. 64 034703(in Chinese)[李芳,赵刚,刘维新,张殊,毕红时2015 64 034703]
[6] Zhang C Y, Zhang Z J, Cong W W, Wei H, Zhang S S 2023Chemistry 86 863(in Chinese)[张晨远,张智嘉,丛巍巍,魏浩,张松松2023化学通报86 863]
[7] Pakzad H, Liravi M, Moosavi A, Nouri B A, Najafkhani H 2020Appl. Sur. Sci. 513 145754
[8] Yue P P, Zhang M, Zhao T, Liu P, Peng F, Yang L Q 2024Ind. Crop. Prod. 214 118523
[9] Makiharju S A, Perlin M, Ceccio S L 2012Int. J. Nav. Arch. Ocean 4 412
[10] McCormick M E, Bhattacharyya R 1973Nav. Eng. 85 11
[11] Kumagai I, Takahashi Y, Murai Y, 2015Ocean Eng. 95 183
[12] Gao Q, Lu J, Zhang G, Zhang J, Wu W, Deng J 2023 Ocean Eng. 272113804
[13] Zhao X, Zong Z 2022 Ocean Eng. 251 111032
[14] Tanaka T, Oishi Y, Park H J, Tasaka Y, Murai Y, Kawakita C 2023 Ocean Eng. 272 113807
[15] Samuel A, Jia W D, Ou M X, Wang P, Gong C 2019Appl. Eng. Agric. 35795
[16] Dabbour M, He R H, Mintah B, Ma H L 2019J. Food Process Eng. 42 e13084
[17] Jiang Y, Li H, Hua L, Zhang D M 2020Biosyst. Eng. 193 216
[18] Zhang P, Zhang Y R, Zhang F J, Liu Z, Zhang Z Q 2024Acta Phys. Sin. 73 154701(in Chinese)[张鹏,张彦如,张福建,刘珍,张忠强2024 73 154701]
[19] Liu H L, Zhang Z Q, Hao M L, Cheng G G, Ding J N 2018Phys. gases 332(in Chinese)[刘汉伦,张忠强,郝茂磊,程广贵,丁建宁2018气体物理3 32]
[20] Killian B, Alizée D, Thierry C, Paul L, Laurent V, Jean-François M 2025Comput. Phys. Commun. 307 109427
[21] Weijs J H, Snoeijer J H, Lohse D 2012Phys. Rev. Lett. 108 104501
[22] Mustafa O, Sophia J, Ali B, Adam A W 2025Int. Commun. Heat Mass 163 108658
[23] Meng J Q, Wang J, Wang L J, Lyu C H, Lyu Y P, Nie B H 2024Colloid. Surface. A 684 133126
[24] Qiu H, Guo W L 2019J. Phys. Chem. Lett. 10 6316.
[25] Yang J H, Yuan Q Z, Zhao Y P 2019Sci. China Phys. Mech. 62124611
[26] García-Magariño A, Lopez-Gavilan P, Sor S, Terroba F 2023J. Mar. Sci. Eng. 11 1315
[27] Kitagawa A, Denissenko P, Murai Y 2019 Exp. Therm. Fluid Sci. 104 141
[28] Tang S, Zhu Y, Yuan S 2023 J. Bionic Eng. 20 2797
[29] Hu H, Wang D, Ren F, Bao L, Priezjev N V, Wen J 2018 Int. J. Multiphase Flow 104 166
[30] Lyu P Y, Xue Y H, Duan H L 2016Adv. Mech. 46 179(in Chinese)[吕鹏宇,薛亚辉,段慧玲2016力学进展46 179]
Metrics
- Abstract views: 33
- PDF Downloads: 0
- Cited By: 0