搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

初始压入位置对Ni基单晶合金纳米压痕影响研究

胡兴健 郑百林 杨彪 余金桂 贺鹏飞 岳珠峰

引用本文:
Citation:

初始压入位置对Ni基单晶合金纳米压痕影响研究

胡兴健, 郑百林, 杨彪, 余金桂, 贺鹏飞, 岳珠峰

Influence of initial indentation point on nanoindentation of Ni-based single crystal line alloys

Hu Xing-Jian, Zheng Bai-Lin, Yang Biao, Yu Jin-Gui, He Peng-Fei, Yue Zhu-Feng
PDF
导出引用
  • 针对Ni基单晶合金建立初始压入γ 相的γ /γ' 模型和初始压入γ'相的γ'/γ 模型, 采用分子动力学方法模拟金刚石压头压入两种模型的纳米压痕过程, 计算两种模型[001]晶向硬度. 采用中心对称参数分析两种模型(001)相界面错配位错对纳米压痕过程的影响. 结果显示: 弛豫后, 两种模型(001)相界面错配位错形式不同, 其中γ'/γ 模型(001)相界面错配位错以面角位错形式存在; 压入深度在0.930 nm 之前, 两种模型(001)相界面错配位错变化不大, 压入载荷-压入深度及硬度-压入深度曲线较符合; 压入深度在0.930 nm之后, γ'/γ 模型(001)相界面错配位错长大很多, 导致相同压入深度时γ'/γ 模型比γ /γ'模型压入载荷和硬度计算结果小; 压入深度在2.055 nm之后, γ /γ'模型(001)相界面错配位错对γ 相中位错进入γ'相有阻碍作用, 但仍有部分位错越过(001) 相界面进入γ' 相中, γ'/γ 模型(001)相界面处面角位错对γ' 相中位错进入γ 相有更明显的阻碍作用, 几乎无位错越过(001) 相界面进入γ 相中, 面角位错的强化作用更明显, 所以γ'/γ 模型比γ /γ'模型压入载荷上升速度快.
    Ni-based single crystal line alloy is constituted with γ phase and γ' phase in the form of coherency. Since an indenter for two-phase coherent structure is bigger than the usual nano-scale indenter, the press location of indenter may be unclear in nanoindentation simulation. Both γ phase and γ' phase may be pressed initially, and the mechanical properties shown are different because of the initial press locations. The nanoindentation of Ni-based single crystal line alloys is simulated by molecular dynamics method. Two models are used to study about the hardness in [001] crystal orientation, one is the model γ /γ' with the initial indentation on γ phase, and the other is the model γ'/γ with the initial indentation on γ' phase. The influence of misfit dislocation at (001) interface on nanoindentation of the two models is analyzed using a center-symmetry parameter. Results show that the misfit dislocation shape of the two models are different after relaxation. Lomer-Cottrell dislocation occurs on (001) interface in the γ'/γ model. Before 0.930 nm press depth is reached, there is little change in the (001) interface misfit dislocation of the two models. Relationship between press load and press depth is similar for the two models, and it is the same in the relationship between hardness and press depth. After press depth reaches 0.930 nm, the misfit dislocation at (001) interface for model γ'/γ grows big, which results in a smaller press load and a smaller hardness computation in the model γ'/γ than that in model γ /γ'. When the press depth reach 2.055 nm, we find only a small amount of dislocations in γ phase that can go into γ' phase since the misfit dislocation at (001) interface in model γ /γ' hinders the process. However, none of dislocations can go into γ phase because of the prevention caused by Lomer-Cottrell dislocation at the (001) interface in the model γ'/γ . That means the Lomer-Cottrell dislocation reinforces the material obviously. So the press load in model γ'/γ grows faster than that in model γ /γ'.
    • 基金项目: 国家自然科学基金国际(地区)合作交流项目(批准号: 51210008)资助的课题.
    • Funds: Project supported by the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 51210008).
    [1]

    Erickson G L 1995 J. of Metals 47 36

    [2]

    Probst-Hein M, Dlouhy A, Eggeler G 1999 Acta Mater. 47 2497

    [3]

    Hu Z Q, Peng P, Liu Y, Jin T, Sun X F, Guan H R 2002 Acta Metall. Sin. 38 1121 (in Chinese) [胡壮麒, 彭平, 刘轶, 金涛, 孙晓峰, 管恒荣 2002 金属学报 38 1121]

    [4]

    Zhang J X, Murakumo T, Koizumi Y, Harada H, Masaki J S 2002 Metall. Mater. Trans. A 33 3741

    [5]

    Gabb T P, Draper S L, Hull D R, Mackay R A, Nathal M V 1989 Mater. Sci. Eng. A 118 59

    [6]

    Pollock T M, Argon A S 1994 Acta Metall. Mater. 42 1859

    [7]

    Wu W P, Guo Y F, Wang Y S, Xu S 2011 Acta Phys. Sin. 60 056802 (in Chinese) [吴文平, 郭雅芳, 汪越胜, 徐爽 2011 60 056802]

    [8]

    Xie H X, Yu T, Liu B 2011 Acta Phys. Sin. 60 046104 (in Chinese) [谢红献, 于涛, 刘波 2011 60 046104]

    [9]

    Zeng F L, Sun Y 2006 Chinese J. Solid Mech. 27 341 (in Chinese) [曾凡林, 孙毅 2006 固体力学学报 27 341]

    [10]

    Sawant A, Tin S 2007 Scripta Mater. 58 275

    [11]

    Gao Y, Wen S P, Wang X H, Pan F 2006 J. Aeronaut. Mater. 26 148 (in Chinese) [高阳, 文胜平, 王晓慧, 潘峰 2006 航空材料学报 26 148]

    [12]

    Zhang P, Li S X, Zhang Z F 2011 Mater. Sci. Eng. A 529 62

    [13]

    Caceres C H, Griffiths J R, Pakdel A R, Davidson C J 2005 Mater. Sci. Eng. A 402 258

    [14]

    Hu X J, Zheng B L, Hu T Y, Yang B, He P F, Yue Z F 2014 Acta Phys. Sin. 63 176201 (in Chinese) [胡兴健, 郑百林, 胡腾越, 杨彪, 贺鹏飞, 岳珠峰 2014 63 176201]

    [15]

    Fang T H, Chang W Y, Huang J J 2009 Acta Mater. 57 3341

    [16]

    Hoffmann K H, Schreiber M 1996 Computational Physics (Berlin Heidelberg: Springer-Verlag) p268

    [17]

    Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 116201

    [18]

    Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 126802

  • [1]

    Erickson G L 1995 J. of Metals 47 36

    [2]

    Probst-Hein M, Dlouhy A, Eggeler G 1999 Acta Mater. 47 2497

    [3]

    Hu Z Q, Peng P, Liu Y, Jin T, Sun X F, Guan H R 2002 Acta Metall. Sin. 38 1121 (in Chinese) [胡壮麒, 彭平, 刘轶, 金涛, 孙晓峰, 管恒荣 2002 金属学报 38 1121]

    [4]

    Zhang J X, Murakumo T, Koizumi Y, Harada H, Masaki J S 2002 Metall. Mater. Trans. A 33 3741

    [5]

    Gabb T P, Draper S L, Hull D R, Mackay R A, Nathal M V 1989 Mater. Sci. Eng. A 118 59

    [6]

    Pollock T M, Argon A S 1994 Acta Metall. Mater. 42 1859

    [7]

    Wu W P, Guo Y F, Wang Y S, Xu S 2011 Acta Phys. Sin. 60 056802 (in Chinese) [吴文平, 郭雅芳, 汪越胜, 徐爽 2011 60 056802]

    [8]

    Xie H X, Yu T, Liu B 2011 Acta Phys. Sin. 60 046104 (in Chinese) [谢红献, 于涛, 刘波 2011 60 046104]

    [9]

    Zeng F L, Sun Y 2006 Chinese J. Solid Mech. 27 341 (in Chinese) [曾凡林, 孙毅 2006 固体力学学报 27 341]

    [10]

    Sawant A, Tin S 2007 Scripta Mater. 58 275

    [11]

    Gao Y, Wen S P, Wang X H, Pan F 2006 J. Aeronaut. Mater. 26 148 (in Chinese) [高阳, 文胜平, 王晓慧, 潘峰 2006 航空材料学报 26 148]

    [12]

    Zhang P, Li S X, Zhang Z F 2011 Mater. Sci. Eng. A 529 62

    [13]

    Caceres C H, Griffiths J R, Pakdel A R, Davidson C J 2005 Mater. Sci. Eng. A 402 258

    [14]

    Hu X J, Zheng B L, Hu T Y, Yang B, He P F, Yue Z F 2014 Acta Phys. Sin. 63 176201 (in Chinese) [胡兴健, 郑百林, 胡腾越, 杨彪, 贺鹏飞, 岳珠峰 2014 63 176201]

    [15]

    Fang T H, Chang W Y, Huang J J 2009 Acta Mater. 57 3341

    [16]

    Hoffmann K H, Schreiber M 1996 Computational Physics (Berlin Heidelberg: Springer-Verlag) p268

    [17]

    Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 116201

    [18]

    Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 126802

  • [1] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析.  , 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [2] 王胜, 陈晶晶, 翁盛槟. 纳米孪晶界对可动位错演化特性与金属Al强化机理探究.  , 2022, 71(2): 029601. doi: 10.7498/aps.71.20211305
    [3] 汉芮岐, 宋海洋, 安敏荣, 李卫卫, 马佳丽. 石墨烯/铝基复合材料在纳米压痕过程中位错与石墨烯相互作用机制的模拟研究.  , 2021, 70(6): 066201. doi: 10.7498/aps.70.20201591
    [4] 陈晶晶. 纳米孪晶界对可动位错演化特性与金属Al强化机理探究.  , 2021, (): . doi: 10.7498/aps.70.20211305
    [5] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟.  , 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [6] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟.  , 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [7] 胡兴健, 郑百林, 胡腾越, 杨彪, 贺鹏飞, 岳珠峰. 考虑相界效应的Ni基单晶合金纳米压痕模拟.  , 2014, 63(17): 176201. doi: 10.7498/aps.63.176201
    [8] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟.  , 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [9] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究.  , 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [10] 谢红献, 于涛, 刘波. 温度对镍基单晶高温合金γ/γ'相界面上错配位错运动影响的分子动力学研究.  , 2011, 60(4): 046104. doi: 10.7498/aps.60.046104
    [11] 马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦. 纳米多晶金属样本构建的分子动力学模拟研究.  , 2010, 59(7): 4781-4787. doi: 10.7498/aps.59.4781
    [12] 王伟, 张凯旺, 孟利军, 李中秋, 左学云, 钟建新. 多壁碳纳米管外壁高温蒸发的分子动力学模拟.  , 2010, 59(4): 2672-2678. doi: 10.7498/aps.59.2672
    [13] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟.  , 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [14] 权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏. 类金刚石薄膜力学特性的分子动力学模拟.  , 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [15] 周耐根, 周 浪. 采用纳米晶柱阵列衬底抑制失配位错形成的分子动力学模拟研究.  , 2008, 57(5): 3064-3070. doi: 10.7498/aps.57.3064
    [16] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟.  , 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [17] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究.  , 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [18] 周耐根, 周 浪. 外延生长薄膜中失配位错形成条件的分子动力学模拟研究.  , 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
    [19] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟.  , 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟.  , 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  6061
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-27
  • 修回日期:  2014-11-04
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map