搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑相界效应的Ni基单晶合金纳米压痕模拟

胡兴健 郑百林 胡腾越 杨彪 贺鹏飞 岳珠峰

引用本文:
Citation:

考虑相界效应的Ni基单晶合金纳米压痕模拟

胡兴健, 郑百林, 胡腾越, 杨彪, 贺鹏飞, 岳珠峰

Nanoindentation simulation of Ni-base single-crystal superalloy with the consideration of interface effect

Hu Xing-Jian, Zheng Bai-Lin, Hu Teng-Yue, Yang Biao, He Peng-Fei, Yue Zhu-Feng
PDF
导出引用
  • 利用分子动力学方法分别模拟金刚石压头压入Ni模型和Ni基单晶合金/ 模型的纳米压痕过程,通过计算得到两种模型[001]晶向的弹性模量及硬度. 采用中心对称参数分析不同压入深度时两种模型内部位错形核、长大过程以及Ni基单晶合金/(001)相界面错配位错对纳米压痕过程的影响. 结果显示:压入深度0.641 nm之前,两种模型的压入载荷-压入深度曲线相似,说明此时相界面处的错配位错对纳米压痕过程的影响很小;压入深度0.995 nm时,在错配位错处发生位错形核,晶体在 相中沿着{111} 面滑移,随即导致Ni基单晶合金/模型压入载荷的下降,并在压入深度达到1.487 nm之前低于Ni模型相同压入深度时的压入载荷;压入深度从1.307 nm开始,由于相界面错配位错的阻碍作用,Ni基单晶合金/模型压入载荷上升速度较快.
    Nanoindentation made by diamond indenter on pure Ni and the /'-phase in a Ni-base single-crystal superalloy is simulated respectively with molecular dynamics method. Elasticity modulus and hardness of the two models are calculated. Initiation and growth of dislocations and the influence of misfit dislocations of /'-phase in Ni-base single-crystal superalloy at different indentation depths are analyzed with center symmetry parameter. Results show that the relationship between indentation load and depth for the two models is similar when the indentation depth below 0.641 nm, indicating that the misfit dislocation on interface little affects the indentation. When the indentation depth reaches 0.995 nm, the dislocation nucleation can be found in misfit dislocations and the crystals that have slipped along {111}-oriented crystal surface in -phase. As a result, the indentation load of the latter model decreases and is smaller than that in pure Ni model before the indentation depth reaches 1.487 nm. When the indentation depth reaches 1.307 nm, owing to the inhibition caused by misfit dislocations at the interface, the indentation load for the /'-phase model in Ni-base single-crystal superalloy increases rapidly.
    • 基金项目: 国家自然科学基金国际(地区)合作交流项目(批准号:51210008)资助的课题.
    • Funds: Project supported by the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 51210008).
    [1]

    Erickson G L 1995 J. of Metals 47 36

    [2]

    Probst-Hein M, Dlouhy A, Eggeler G 1999 Acta Mater. 47 2497

    [3]
    [4]
    [5]

    Hu Z Q, Peng P, Liu Y, Jin T, Sun X F, Guan H R 2002 Acta Metall. Sin. 38 1121 (in Chinese)[胡壮麒, 彭平, 刘轶, 金涛, 孙晓峰, 管恒荣 2002 金属学报 38 1121]

    [6]

    Wen Y H, Zhu T, Cao L X, Wang C Y 2003 Acta Phys. Sin. 52 2520 (in Chinese)[文玉华, 朱弢, 曹立霞, 王崇愚 2003 52 2520]

    [7]
    [8]
    [9]

    Zhu T, Wang C Y, Gan Y 2009 Acta Phys. Sin. 58 S156 (in Chinese)[朱弢, 王崇愚, 干勇 2009 58 S156]

    [10]
    [11]

    Jackson J J, Donachie M J, Henrich R J, Gell M 1977 Metall. Trans. A 8 1615

    [12]

    Khan T, Caron P 1986 Mater. Sci. Techn 2 486

    [13]
    [14]
    [15]

    Wu W P, Guo Y F, Wang Y S, Xu S 2011 Acta Phys. Sin. 60 056802 (in Chinese)[吴文平, 郭雅芳, 汪越胜, 徐爽 2011 60 056802]

    [16]

    Xie H X, Yu T, Liu B 2011 Acta Phys. Sin. 60 046104 (in Chinese)[谢红献, 于涛, 刘波 2011 60 046104]

    [17]
    [18]

    Xie H X, Wang C Y, Yu T 2009 Mater. Sci. Eng. 17 055007

    [19]
    [20]

    Zhu T, Wang C Y 2005 Phys. Rev. B 72 014111

    [21]
    [22]
    [23]

    Geng C Y, Wang C Y, Zhu T 2005 Acta Phys. Sin. 54 1320 (in Chinese)[耿翠玉, 王崇愚, 朱弢 2005 54 1320]

    [24]
    [25]

    Zhang J X, Murakumo T, Koizumi Y, Harada H, Masaki J S 2002 Metall. Mater. Trans. A 33 3741

    [26]

    Gabb T P, Draper S L, Hull D R, Mackay R A, Nathal M V 1989 Mater. Sci. Eng. A 118 59

    [27]
    [28]

    Pollock T M, Argon A S 1994 Acta Metall. Mater. 42 1859

    [29]
    [30]
    [31]

    Xie C Y 2001 Phys. 30 432 (in Chinese)[谢存毅 2001 物理 30 432]

    [32]
    [33]

    Quan W L, Li H X, Ji L, Zhao F, Du W, Zhou H D, Chen J M 2010 Acta Phys. Sin. 59 5687 (in Chinese)[权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏 2010 59 5687]

    [34]
    [35]

    Ju S P, Wang C T, Chien C H, Huang J C, Jian S R 2007 Mol. Simulat. 33 905

    [36]
    [37]

    Lin J F, Wei C C, Yung Y K, Ai C F 2004 Diam. Relat. Mat. 13 1895

    [38]

    Bouzakis K D, Hadjiyiannis S, Skordaris G, Mirisidis I, Michailidis N, Efstathiou K, Pavlidou E, Erkens G, Cremer R, Rambadt S, Wirth I 2004 Surf. Coat. Technol. 177 657

    [39]
    [40]
    [41]

    An T, Wen M, Tian H W, Wang L L, Song L J, Zheng W T 2013 Acta Phys. Sin. 62 136201 (in Chinese)[安涛, 文懋, 田宏伟, 王丽丽, 宋立军, 郑伟涛 2013 62 136201]

    [42]
    [43]

    Fang T H, Chang W Y, Huang J J 2009 Acta Mater. 57 3341

    [44]
    [45]

    Hoffmann K H, Schreiber M 1996 Computational Physics (Berlin Heidelberg: Springer-Verlag) 268

    [46]
    [47]

    Mishin Y, Farkas D, Mehl M J, Papaconstantopoulos D A 1999 Phys. Rev. B 59 3393

    [48]
    [49]

    Maekawa K, Itoh A 1995 Wear. September 188 115

    [50]

    Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 116201

    [51]
    [52]
    [53]

    Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 126802

    [54]

    Chen S D, Ke F J 2003 Sci. China Ser. G 33 400 (in Chinese)[陈尚达, 柯孚久 2003 中国科学 33 400]

    [55]
    [56]

    Oliver W C, Pharr G M 1992 J. Mater. Res. 7 1564

    [57]
    [58]

    Ni H, Li X, Gao H, Nguyen T P 2005 Nanotechnology 16 1746

    [59]
    [60]
    [61]

    Lee Y, Park J Y, Kim S Y, Jun S, Im S 2005 Mech. Mater. 37 1035

  • [1]

    Erickson G L 1995 J. of Metals 47 36

    [2]

    Probst-Hein M, Dlouhy A, Eggeler G 1999 Acta Mater. 47 2497

    [3]
    [4]
    [5]

    Hu Z Q, Peng P, Liu Y, Jin T, Sun X F, Guan H R 2002 Acta Metall. Sin. 38 1121 (in Chinese)[胡壮麒, 彭平, 刘轶, 金涛, 孙晓峰, 管恒荣 2002 金属学报 38 1121]

    [6]

    Wen Y H, Zhu T, Cao L X, Wang C Y 2003 Acta Phys. Sin. 52 2520 (in Chinese)[文玉华, 朱弢, 曹立霞, 王崇愚 2003 52 2520]

    [7]
    [8]
    [9]

    Zhu T, Wang C Y, Gan Y 2009 Acta Phys. Sin. 58 S156 (in Chinese)[朱弢, 王崇愚, 干勇 2009 58 S156]

    [10]
    [11]

    Jackson J J, Donachie M J, Henrich R J, Gell M 1977 Metall. Trans. A 8 1615

    [12]

    Khan T, Caron P 1986 Mater. Sci. Techn 2 486

    [13]
    [14]
    [15]

    Wu W P, Guo Y F, Wang Y S, Xu S 2011 Acta Phys. Sin. 60 056802 (in Chinese)[吴文平, 郭雅芳, 汪越胜, 徐爽 2011 60 056802]

    [16]

    Xie H X, Yu T, Liu B 2011 Acta Phys. Sin. 60 046104 (in Chinese)[谢红献, 于涛, 刘波 2011 60 046104]

    [17]
    [18]

    Xie H X, Wang C Y, Yu T 2009 Mater. Sci. Eng. 17 055007

    [19]
    [20]

    Zhu T, Wang C Y 2005 Phys. Rev. B 72 014111

    [21]
    [22]
    [23]

    Geng C Y, Wang C Y, Zhu T 2005 Acta Phys. Sin. 54 1320 (in Chinese)[耿翠玉, 王崇愚, 朱弢 2005 54 1320]

    [24]
    [25]

    Zhang J X, Murakumo T, Koizumi Y, Harada H, Masaki J S 2002 Metall. Mater. Trans. A 33 3741

    [26]

    Gabb T P, Draper S L, Hull D R, Mackay R A, Nathal M V 1989 Mater. Sci. Eng. A 118 59

    [27]
    [28]

    Pollock T M, Argon A S 1994 Acta Metall. Mater. 42 1859

    [29]
    [30]
    [31]

    Xie C Y 2001 Phys. 30 432 (in Chinese)[谢存毅 2001 物理 30 432]

    [32]
    [33]

    Quan W L, Li H X, Ji L, Zhao F, Du W, Zhou H D, Chen J M 2010 Acta Phys. Sin. 59 5687 (in Chinese)[权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏 2010 59 5687]

    [34]
    [35]

    Ju S P, Wang C T, Chien C H, Huang J C, Jian S R 2007 Mol. Simulat. 33 905

    [36]
    [37]

    Lin J F, Wei C C, Yung Y K, Ai C F 2004 Diam. Relat. Mat. 13 1895

    [38]

    Bouzakis K D, Hadjiyiannis S, Skordaris G, Mirisidis I, Michailidis N, Efstathiou K, Pavlidou E, Erkens G, Cremer R, Rambadt S, Wirth I 2004 Surf. Coat. Technol. 177 657

    [39]
    [40]
    [41]

    An T, Wen M, Tian H W, Wang L L, Song L J, Zheng W T 2013 Acta Phys. Sin. 62 136201 (in Chinese)[安涛, 文懋, 田宏伟, 王丽丽, 宋立军, 郑伟涛 2013 62 136201]

    [42]
    [43]

    Fang T H, Chang W Y, Huang J J 2009 Acta Mater. 57 3341

    [44]
    [45]

    Hoffmann K H, Schreiber M 1996 Computational Physics (Berlin Heidelberg: Springer-Verlag) 268

    [46]
    [47]

    Mishin Y, Farkas D, Mehl M J, Papaconstantopoulos D A 1999 Phys. Rev. B 59 3393

    [48]
    [49]

    Maekawa K, Itoh A 1995 Wear. September 188 115

    [50]

    Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 116201

    [51]
    [52]
    [53]

    Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 126802

    [54]

    Chen S D, Ke F J 2003 Sci. China Ser. G 33 400 (in Chinese)[陈尚达, 柯孚久 2003 中国科学 33 400]

    [55]
    [56]

    Oliver W C, Pharr G M 1992 J. Mater. Res. 7 1564

    [57]
    [58]

    Ni H, Li X, Gao H, Nguyen T P 2005 Nanotechnology 16 1746

    [59]
    [60]
    [61]

    Lee Y, Park J Y, Kim S Y, Jun S, Im S 2005 Mech. Mater. 37 1035

  • [1] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析.  , 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [2] 王胜, 陈晶晶, 翁盛槟. 纳米孪晶界对可动位错演化特性与金属Al强化机理探究.  , 2022, 71(2): 029601. doi: 10.7498/aps.71.20211305
    [3] 汉芮岐, 宋海洋, 安敏荣, 李卫卫, 马佳丽. 石墨烯/铝基复合材料在纳米压痕过程中位错与石墨烯相互作用机制的模拟研究.  , 2021, 70(6): 066201. doi: 10.7498/aps.70.20201591
    [4] 陈晶晶. 纳米孪晶界对可动位错演化特性与金属Al强化机理探究.  , 2021, (): . doi: 10.7498/aps.70.20211305
    [5] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟.  , 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [6] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟.  , 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [7] 胡兴健, 郑百林, 杨彪, 余金桂, 贺鹏飞, 岳珠峰. 初始压入位置对Ni基单晶合金纳米压痕影响研究.  , 2015, 64(7): 076201. doi: 10.7498/aps.64.076201
    [8] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟.  , 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [9] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究.  , 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [10] 谢红献, 于涛, 刘波. 温度对镍基单晶高温合金γ/γ'相界面上错配位错运动影响的分子动力学研究.  , 2011, 60(4): 046104. doi: 10.7498/aps.60.046104
    [11] 马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦. 纳米多晶金属样本构建的分子动力学模拟研究.  , 2010, 59(7): 4781-4787. doi: 10.7498/aps.59.4781
    [12] 王伟, 张凯旺, 孟利军, 李中秋, 左学云, 钟建新. 多壁碳纳米管外壁高温蒸发的分子动力学模拟.  , 2010, 59(4): 2672-2678. doi: 10.7498/aps.59.2672
    [13] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟.  , 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [14] 权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏. 类金刚石薄膜力学特性的分子动力学模拟.  , 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [15] 周耐根, 周 浪. 采用纳米晶柱阵列衬底抑制失配位错形成的分子动力学模拟研究.  , 2008, 57(5): 3064-3070. doi: 10.7498/aps.57.3064
    [16] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟.  , 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [17] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究.  , 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [18] 周耐根, 周 浪. 外延生长薄膜中失配位错形成条件的分子动力学模拟研究.  , 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
    [19] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟.  , 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟.  , 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  6132
  • PDF下载量:  1023
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-16
  • 修回日期:  2014-04-29
  • 刊出日期:  2014-09-05

/

返回文章
返回
Baidu
map