搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微纳流固界面主动气膜减阻机理分子动力学研究

张彦如 高翔 宁宏阳 张福建 宋云云 张忠强 刘珍

引用本文:
Citation:

微纳流固界面主动气膜减阻机理分子动力学研究

张彦如, 高翔, 宁宏阳, 张福建, 宋云云, 张忠强, 刘珍

Molecular dynamics study on the drag reduction mechanism of an active gas layer at micro/nano fluid-solid interfaces

ZHANG Yanru, GAO Xiang, NING Hongyang, ZHANG Fujian, SONG Yunyun, ZHANG Zhongqiang, LIU Zhen
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 航行器在水中行驶时产生的摩擦阻力是影响其耗能和速度最主要的原因,主动减阻技术对降低水下航行器航行过程中摩擦阻力,提升航行器综合性能具有重要意义.本文采用分子动力学方法研究了通入气体后Couette流在纳米通道内液体的流动特性和边界减阻特性,分析了表面润湿性、剪切速度和气体通入量对边界滑移速度和减阻效果的影响规律.研究结果表明:当气体以离散气泡形式吸附于固体表面时,气泡会阻碍近壁面液体流动及滑移减阻,增强表面疏水性、提高剪切速度及增加气体通入量可促进气泡横向铺展,减弱对液体流动的阻碍作用,提升滑移效果;提高表面疏水性、剪切速度和气体通入量均有利于离散气泡形成气膜;气膜形成后,剪切应力显著降低,滑移速度随润湿性、剪切速度和气体通入量的变化呈现不同的变化规律.研究结果为船舶和水下航行器中主动气膜减阻技术和表面结构设计提供理论依据.
    Friction resistance is the primary factor influencing the energy consumption and speed of underwater vehicles. Active air layer drag reduction is an active boundary layer control technique that reduces wall friction drag by injecting gas into the solid-liquid boundary layer. Compared to other drag reduction methods, which are often difficult to scale due to high costs and potential environmental concerns, this technology utilizes a simple auxiliary device. By employing inexpensive and environmentally friendly compressed air or combustion exhaust gases, it effectively lowers fluid resistance. Therefore, active drag reduction technology plays a crucial role in minimizing friction and enhancing overall performance. In this study, molecular dynamics simulations are used to construct a Couette flow shear model with gas injected at the boundaries of a nanochannel. This paper investigates the flow characteristics and boundary drag reduction of Couette flow in a nanochannel. The influence of gas injection on these characteristics is examined, along with the effects of surface wettability, shear velocity, and gas injection rate on boundary slip velocity and drag reduction. The results indicate that gas adsorption on the solid surface in the form of discrete bubbles hinders liquid flow and slip near the wall, leading to increased drag. However, increasing surface hydrophobicity, shear rate, and gas injection rate facilitates the transverse spreading of bubbles, reduces flow obstruction, and enhances slip. Additionally, these factors promote the formation of a continuous gas layer from discrete bubbles, further improving drag reduction. Once the gas layer forms, shear stress decreases significantly, and slip velocity varies with surface wettability, shear velocity, and gas injection rate. These findings provide a theoretical foundation for active gas layer drag reduction technology and the optimization of surface structures in ships and underwater vehicles.
  • [1]

    Sindagi S, Vijayakumar R 2020Ships Offshore Struct. 16 968

    [2]

    Fu Y F, Yuan C Q, Bai X Q 2017 Biosurf. Biotribol. 3 11

    [3]

    Ceccio S L 2010Annu. Rev. Fluid Mech. 42 183

    [4]

    Kang X X, Hu J X, Lin Z W, Pan D Y 2023Acta Mech. Sinica. 55 1087(in Chinese)[康晓宣,胡建新,林昭武,潘定一2023力学学报551087]

    [5]

    Li F, Zhao G, Liu W X, Zhang S, Bi H S 2015Acta Phys. Sin. 64 034703(in Chinese)[李芳,赵刚,刘维新,张殊,毕红时2015 64 034703]

    [6]

    Zhang C Y, Zhang Z J, Cong W W, Wei H, Zhang S S 2023Chemistry 86 863(in Chinese)[张晨远,张智嘉,丛巍巍,魏浩,张松松2023化学通报86 863]

    [7]

    Pakzad H, Liravi M, Moosavi A, Nouri B A, Najafkhani H 2020Appl. Sur. Sci. 513 145754

    [8]

    Yue P P, Zhang M, Zhao T, Liu P, Peng F, Yang L Q 2024Ind. Crop. Prod. 214 118523

    [9]

    Makiharju S A, Perlin M, Ceccio S L 2012Int. J. Nav. Arch. Ocean 4 412

    [10]

    McCormick M E, Bhattacharyya R 1973Nav. Eng. 85 11

    [11]

    Kumagai I, Takahashi Y, Murai Y, 2015Ocean Eng. 95 183

    [12]

    Gao Q, Lu J, Zhang G, Zhang J, Wu W, Deng J 2023 Ocean Eng. 272113804

    [13]

    Zhao X, Zong Z 2022 Ocean Eng. 251 111032

    [14]

    Tanaka T, Oishi Y, Park H J, Tasaka Y, Murai Y, Kawakita C 2023 Ocean Eng. 272 113807

    [15]

    Samuel A, Jia W D, Ou M X, Wang P, Gong C 2019Appl. Eng. Agric. 35795

    [16]

    Dabbour M, He R H, Mintah B, Ma H L 2019J. Food Process Eng. 42 e13084

    [17]

    Jiang Y, Li H, Hua L, Zhang D M 2020Biosyst. Eng. 193 216

    [18]

    Zhang P, Zhang Y R, Zhang F J, Liu Z, Zhang Z Q 2024Acta Phys. Sin. 73 154701(in Chinese)[张鹏,张彦如,张福建,刘珍,张忠强2024 73 154701]

    [19]

    Liu H L, Zhang Z Q, Hao M L, Cheng G G, Ding J N 2018Phys. gases 332(in Chinese)[刘汉伦,张忠强,郝茂磊,程广贵,丁建宁2018气体物理3 32]

    [20]

    Killian B, Alizée D, Thierry C, Paul L, Laurent V, Jean-François M 2025Comput. Phys. Commun. 307 109427

    [21]

    Weijs J H, Snoeijer J H, Lohse D 2012Phys. Rev. Lett. 108 104501

    [22]

    Mustafa O, Sophia J, Ali B, Adam A W 2025Int. Commun. Heat Mass 163 108658

    [23]

    Meng J Q, Wang J, Wang L J, Lyu C H, Lyu Y P, Nie B H 2024Colloid. Surface. A 684 133126

    [24]

    Qiu H, Guo W L 2019J. Phys. Chem. Lett. 10 6316.

    [25]

    Yang J H, Yuan Q Z, Zhao Y P 2019Sci. China Phys. Mech. 62124611

    [26]

    García-Magariño A, Lopez-Gavilan P, Sor S, Terroba F 2023J. Mar. Sci. Eng. 11 1315

    [27]

    Kitagawa A, Denissenko P, Murai Y 2019 Exp. Therm. Fluid Sci. 104 141

    [28]

    Tang S, Zhu Y, Yuan S 2023 J. Bionic Eng. 20 2797

    [29]

    Hu H, Wang D, Ren F, Bao L, Priezjev N V, Wen J 2018 Int. J. Multiphase Flow 104 166

    [30]

    Lyu P Y, Xue Y H, Duan H L 2016Adv. Mech. 46 179(in Chinese)[吕鹏宇,薛亚辉,段慧玲2016力学进展46 179]

  • [1] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟.  , doi: 10.7498/aps.73.20232031
    [2] 张鹏, 张彦如, 张福建, 刘珍, 张忠强. 纳米限域Couette流边界气泡减阻机理.  , doi: 10.7498/aps.73.20240474
    [3] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究.  , doi: 10.7498/aps.72.20221815
    [4] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟.  , doi: 10.7498/aps.69.20200323
    [5] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究.  , doi: 10.7498/aps.69.20200491
    [6] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟.  , doi: 10.7498/aps.67.20172193
    [7] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟.  , doi: 10.7498/aps.67.20172174
    [8] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究.  , doi: 10.7498/aps.64.016202
    [9] 王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良. SiC/C界面辐照性能的分子动力学研究.  , doi: 10.7498/aps.63.153402
    [10] 常旭. 多层石墨烯的表面起伏的分子动力学模拟.  , doi: 10.7498/aps.63.086102
    [11] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算.  , doi: 10.7498/aps.62.056803
    [12] 魏琪, 鄂文汲. 薄膜去湿不稳定性的热力学分析.  , doi: 10.7498/aps.61.160508
    [13] 马颖. 非晶态石英的变电荷分子动力学模拟.  , doi: 10.7498/aps.60.026101
    [14] 张亮, 付伟基, 张立凤, 吴海燕, 黄泓. Couette流能量的演变.  , doi: 10.7498/aps.59.1437
    [15] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究.  , doi: 10.7498/aps.56.5389
    [16] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究.  , doi: 10.7498/aps.54.4245
    [17] 周耐根, 周 浪. 外延生长薄膜中失配位错形成条件的分子动力学模拟研究.  , doi: 10.7498/aps.54.3278
    [18] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟.  , doi: 10.7498/aps.54.4836
    [19] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟.  , doi: 10.7498/aps.51.2308
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟.  , doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  26
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-24

/

返回文章
返回
Baidu
map