搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微纳流固界面主动气膜减阻机理分子动力学研究

张彦如 高翔 宁宏阳 张福建 宋云云 张忠强 刘珍

引用本文:
Citation:

微纳流固界面主动气膜减阻机理分子动力学研究

张彦如, 高翔, 宁宏阳, 张福建, 宋云云, 张忠强, 刘珍

Molecular dynamics study on drag reduction mechanism of active gas layer at micro/nano fluid-solid interfaces

ZHANG Yanru, GAO Xiang, NING Hongyang, ZHANG Fujian, SONG Yunyun, ZHANG Zhongqiang, LIU Zhen
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 航行器在水中行驶时产生的摩擦阻力是影响其耗能和速度最主要的原因, 主动减阻技术对降低水下航行器航行过程中摩擦阻力, 提升航行器综合性能具有重要意义. 本文采用分子动力学方法研究了通入气体后Couette流在纳米通道内液体的流动特性和边界减阻特性, 分析了表面润湿性、剪切速度和气体通入量对边界滑移速度和减阻效果的影响规律. 研究结果表明, 当气体以离散气泡形式吸附于固体表面时, 气泡会阻碍近壁面液体流动及滑移减阻, 增强表面疏水性、提高剪切速度及增大气体通入量可促进气泡横向铺展, 减弱对液体流动的阻碍作用, 提升滑移效果; 提高表面疏水性、剪切速度和气体通入量均有利于离散气泡形成气膜; 气膜形成后, 剪切应力显著降低, 滑移速度随润湿性、剪切速度和气体通入量的变化呈现不同的变化规律. 研究结果为船舶和水下航行器中主动气膜减阻技术和表面结构设计提供理论依据.
    Friction resistance is the primary factor influencing the energy consumption and speed of underwater vehicles. Active air layer drag reduction is an active boundary layer control technique that reduces wall friction drag by injecting gas into the solid-liquid boundary layer. Compared with other drag reduction methods, which are often difficult to scale due to high costs and potential environmental concerns, this technology utilizes a simple auxiliary device. By employing inexpensive and environmentally friendly compressed air or combustion exhaust gases, it effectively lowers fluid resistance. Therefore, active drag reduction technology plays a crucial role in minimizing friction and enhancing overall performance. In this study, molecular dynamics simulations are used to construct a Couette flow shear model, with gas injected at the boundaries of a nanochannel. The flow characteristics and boundary drag reduction of Couette flow in a nanochannel is investigated in this work. The influence of gas injection on these characteristics is examined, along with the effects of surface wettability, shear velocity, and gas injection rate on boundary slip velocity and drag reduction. The results indicate that the gas adsorption on the solid surface in the form of discrete bubbles hinders liquid flowing and slipping near the wall, leading to the increase of drag. However, increasing surface hydrophobicity, shear rate, and gas injection rate facilitates the transverse spreading of bubbles, reduces flow obstruction, and enhances slip. Additionally, these factors promote the formation of a continuous gas layer from discrete bubbles, further improving drag reduction. Once the gas layer forms, shear stress decreases significantly, and slip velocity varies with surface wettability, shear velocity, and gas injection rate. These findings provide a theoretical foundation for developing the active gas layer drag reduction technology and optimizing the surface structures in ships and underwater vehicles.
  • 图 1  (a) Couette流剪切流动及通气系统模型示意图; (b) 模型主要尺寸; (c) 不同边界条件下气体形态图

    Fig. 1.  (a) Schematic diagram of Couette flow shear flow and ventilation system model; (b) main dimensions of the model; (c) gas morphology diagram under different boundary conditions.

    图 2  不同固-气耦合强度下, (a)气体形态图, 以及(b), (c)液体原子速度轮廓图, 其中(b)气泡, (c)气膜

    Fig. 2.  (a) Gas morphology and(b), (c) liquid atomic velocity profiles under different solid-gas interaction strengths, where (b) represents bubbles and (c) represents the gas layer.

    图 3  不同固-气耦合强度下, (a)边界滑移速度变化图和(b) 剪切应力变化图

    Fig. 3.  Boundary slip velocity (a) and shear stress (b) under different solid-gas interaction strengths.

    图 4  不同固-气相互作用强度下的密度分布图 (a)无气体; (b)气泡; (c)气膜

    Fig. 4.  Density distribution under different solid-gas interaction strengths: (a) Without gas; (b) with bubble; (c) with gas layer.

    图 5  不同剪切速度下, (a) 气体形态图, (b) 边界滑移速度和剪切应力图, 以及(c) 液体原子密度分布图

    Fig. 5.  (a) Gas morphology, (b) boundary slip velocity and shear stress, and (c) liquid atomic density distribution in the bubbles state Under different shear velocities.

    图 6  形成气膜后不同剪切速度下, (a) 气体形态图和(b) 液体原子速度轮廓图(其中半透明的线条为对照的无气体通入时的液体原子速度)

    Fig. 6.  (a) Gas morphology and (b) liquid atomic velocity profile under different shear velocities after the formation of gas layer. In panel (b), the translucent lines represent the liquid atomic velocity without gas injection for comparison.

    图 7  不同剪切速度下, (a) 边界滑移速度图、(b) 剪切应力图和(c) 液体原子速度轮廓图(气膜)

    Fig. 7.  (a) Boundary slip velocity, (b)shear stress, and (c) liquid atomic velocity profile in the gas layer state under different shear velocities.

    图 8  通入不同气体原子数量时, (a) 气体形态图、(b) 液体原子速度轮廓、(c) 边界滑移速度及剪切应力图和(d) 液体原子密度分布图

    Fig. 8.  (a) Gas morphology, (b) liquid atomic velocity profile, (c) boundary slip velocity and shear stress, and (d) liquid atomic density distribution in the bubbles state under different numbers of injected gas atoms.

    图 9  通入不同气体原子数量时, (a)气体形态图、(b)液体原子速度轮廓、(c)边界滑移速度及剪切应力图和(d) 液体原子密度分布图(气膜)

    Fig. 9.  (a) Gas morphology, (b) liquid atomic velocity profile, (c) boundary slip velocity and shear stress, and (d) liquid atomic density distribution in the gas layer state under different numbers of injected gas atoms.

    表 1  三相相互作用势能参数

    Table 1.  Potential energy parameter of three-phase interaction.

    两相类型ε/(kBT)/(kcal·mol–1)σ
    固-固1.23.4
    液-液1.23.4
    气-气0.45.0
    固-液0.73.4
    固-气1.04.2
    液-气0.44.488
    下载: 导出CSV
    Baidu
  • [1]

    Sindagi S, Vijayakumar R 2020 Ships Offshore Struct. 16 968

    [2]

    Fu Y F, Yuan C Q, Bai X Q 2017 Biosurf. Biotribol. 3 11Google Scholar

    [3]

    Ceccio S L 2010 Annu. Rev. Fluid Mech. 42 183Google Scholar

    [4]

    康晓宣, 胡建新, 林昭武, 潘定一 2023 力学学报 55 1087Google Scholar

    Kang X X, Hu J X, Lin Z W, Pan D Y 2023 Chin. J. Theor. Appl. Mech. 55 1087Google Scholar

    [5]

    李芳, 赵刚, 刘维新, 张殊, 毕红时 2015 64 034703Google Scholar

    Li F, Zhao G, Liu W X, Zhang S, Bi H S 2015 Acta Phys. Sin. 64 034703Google Scholar

    [6]

    张晨远, 张智嘉, 丛巍巍, 魏浩, 张松松 2023 化学通报 86 863

    Zhang C Y, Zhang Z J, Cong W W, Wei H, Zhang S S 2023 Chem. Bull. 86 863

    [7]

    Pakzad H, Liravi M, Moosavi A, Nouri B A, Najafkhani H 2020 Appl. Sur. Sci. 513 145754Google Scholar

    [8]

    Yue P P, Zhang M, Zhao T, Liu P, Peng F, Yang L Q 2024 Ind. Crop. Prod. 214 118523Google Scholar

    [9]

    Makiharju S A, Perlin M, Ceccio S L 2012 Int. J. Nav. Arch. Ocean 4 412Google Scholar

    [10]

    McCormick M E, Bhattacharyya R 1973 Nav. Eng. 85 11

    [11]

    Kumagai I, Takahashi Y, Murai Y, 2015 Ocean Eng. 95 183Google Scholar

    [12]

    Gao Q D, Lu J S, Zhang G L, Zhang J W, Wu W F, Deng J J 2023 Ocean Eng. 272 113804Google Scholar

    [13]

    Zhao X J, Zong Z 2022 Ocean Eng. 251 111032Google Scholar

    [14]

    Tanaka T, Oishi Y, Park H J, Tasaka Y, Murai Y, Kawakita C 2023 Ocean Eng. 272 113807Google Scholar

    [15]

    Samuel A, Jia W D, Ou M X, Wang P, Gong C 2019 Appl. Eng. Agric. 35 795Google Scholar

    [16]

    Dabbour M, He R H, Mintah B, Ma H L 2019 J. Food Process Eng. 42 e13084Google Scholar

    [17]

    Jiang Y, Li H, Hua L, Zhang D M 2020 Biosyst. Eng. 193 216Google Scholar

    [18]

    张鹏, 张彦如, 张福建, 刘珍, 张忠强 2024 73 154701Google Scholar

    Zhang P, Zhang Y R, Zhang F J, Liu Z, Zhang Z Q 2024 Acta Phys. Sin. 73 154701Google Scholar

    [19]

    刘汉伦, 张忠强, 郝茂磊, 程广贵, 丁建宁 2018 气体物理 3 32

    Liu H L, Zhang Z Q, Hao M L, Cheng G G, Ding J N 2018 Phys. Gases 3 32

    [20]

    Killian B, Alizée D, Thierry C, Paul L, Laurent V, Jean-François M 2025 Comput. Phys. Commun. 307 109427Google Scholar

    [21]

    Weijs J H, Snoeijer J H, Lohse D 2012 Phys. Rev. Lett. 108 104501Google Scholar

    [22]

    Mustafa O, Sophia J, Ali B, Adam A W 2025 Int. Commun. Heat Mass 163 108658Google Scholar

    [23]

    Meng J Q, Wang J, Wang L J, Lyu C H, Lyu Y P, Nie B H 2024 Colloid. Surf. A 684 133126Google Scholar

    [24]

    Qiu H, Guo W L 2019 J. Phys. Chem. Lett. 10 6316.Google Scholar

    [25]

    Yang J H, Yuan Q Z, Zhao Y P 2019 Sci. China Phys. Mech. 62 124611Google Scholar

    [26]

    García-Magari ño A, Lopez-Gavilan P, Sor S, Terroba F 2023 J. Mar. Sci. Eng. 11 1315Google Scholar

    [27]

    Kitagawa A, Denissenko P, Murai Y 2019 Exp. Therm. Fluid Sci. 104 141Google Scholar

    [28]

    Tang S, Zhu Y, Yuan S 2023 J. Bionic Eng. 20 2797Google Scholar

    [29]

    Hu H, Wang D, Ren F, Bao L, Priezjev N V, Wen J 2018 Int. J. Multiphase Flow 104 166Google Scholar

    [30]

    吕鹏宇, 薛 亚辉, 段慧玲 2016 力学进展 46 179Google Scholar

    Lyu P Y, Xue Y H, Duan H L 2016 Adv. Mech. 46 179Google Scholar

  • [1] 杨欢, 郑雨军. 分子动力学中的几何相位.  , doi: 10.7498/aps.74.20250388
    [2] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟.  , doi: 10.7498/aps.73.20232031
    [3] 张鹏, 张彦如, 张福建, 刘珍, 张忠强. 纳米限域Couette流边界气泡减阻机理.  , doi: 10.7498/aps.73.20240474
    [4] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究.  , doi: 10.7498/aps.72.20221815
    [5] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟.  , doi: 10.7498/aps.69.20200323
    [6] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究.  , doi: 10.7498/aps.69.20200491
    [7] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟.  , doi: 10.7498/aps.67.20172193
    [8] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟.  , doi: 10.7498/aps.67.20172174
    [9] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究.  , doi: 10.7498/aps.64.016202
    [10] 王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良. SiC/C界面辐照性能的分子动力学研究.  , doi: 10.7498/aps.63.153402
    [11] 常旭. 多层石墨烯的表面起伏的分子动力学模拟.  , doi: 10.7498/aps.63.086102
    [12] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算.  , doi: 10.7498/aps.62.056803
    [13] 魏琪, 鄂文汲. 薄膜去湿不稳定性的热力学分析.  , doi: 10.7498/aps.61.160508
    [14] 马颖. 非晶态石英的变电荷分子动力学模拟.  , doi: 10.7498/aps.60.026101
    [15] 张亮, 付伟基, 张立凤, 吴海燕, 黄泓. Couette流能量的演变.  , doi: 10.7498/aps.59.1437
    [16] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究.  , doi: 10.7498/aps.56.5389
    [17] 罗 晋, 祝文军, 林理彬, 贺红亮, 经福谦. 单晶铜在动态加载下空洞增长的分子动力学研究.  , doi: 10.7498/aps.54.2791
    [18] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟.  , doi: 10.7498/aps.54.4836
    [19] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟.  , doi: 10.7498/aps.51.2308
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟.  , doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  300
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-06
  • 修回日期:  2025-03-23
  • 上网日期:  2025-04-24

/

返回文章
返回
Baidu
map