Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Density functional theory calculation of diffusion mechanism of intrinsic defects in rutile TiO2

Liu Ru-Lin Fang Liang Hao Yue Chi Ya-Qing

Citation:

Density functional theory calculation of diffusion mechanism of intrinsic defects in rutile TiO2

Liu Ru-Lin, Fang Liang, Hao Yue, Chi Ya-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Diffusion mechanisms of four intrinsic point defects in rutile TiO2, titanium interstitial (TiI), titanium vacancy (Vti), oxygen interstitial (OI) and oxygen vacancy (VO) are studied in the framework of density functional theory with quantum ESPRESSO suite. Diffusion processes are simulated by defect movement between two stable atomic configurations through using the climbing image nudged elastic band (CI-NEB) method.The initial and final atomic structure in the minimum energy path (MEP) are constructed with 3×3×4 perfect supercell matrix of 216 atoms. Considering that oxygen atoms build up TiO6 octahedron and half of the octahedral centers are occupied by Ti atoms in rutile, interstitial defect is constructed by adding one Ti or O atom to the empty oxygen octahedral center, and vacancy defect is constructed by removing one atom from crystal lattice grid. Structural relaxation is performed before performing the NEB calculation with gamma k point sampling in irreducible Brillouin zone with an energy cutoff of 650 eV. As rutile TiO2 has tetragonal symmetry (P42/mnm), the diffusion channel along the[100] direction is equivalent to the[010] direction. Then, the diffusion paths along the direction parallel to c axis ([001] direction) and perpendicular to the c axis ([100] or[110] direction) are chosen to find the minimum diffusion energy path of TiI and OI. As for VTi and VO, diffusion paths are established from the vacancy site to nearest lattice site of the same kind.Calculation results exhibit significant anisotropy of energy barrier and diffusion mechanism. Of all defect species, TiI diffusion along the[001] direction through interstitial mechanism has the lowest activation barrier of 0.5057 eV. In addition, diffusions along the[100] and[110] direction through kick-out mechanism show higher energy barriers of 1.0024 eV and 2.7758 eV, respectively. Compared with TiI, OI shows small barrier discrepancy between different diffusion directions, which is 0.859 eV along[001] and 0.902 eV along[100] direction. For vacancy defects, diffusion can occur only through the vacancy mechanism. The activation barrier energy of symmetrically inequivalent diffusion path of VO is 0.735 eV along the[110] direction, 1.747 eV along the[001] direction, and 1.119 eV from the TiO6 apex site to the equator site. On the other hand, VTi has two inequivalent paths with much larger diffusion energy barriers:2.375 eV along the[111] direction and 3.232 eV along the[001] direction. In summary, the TiI interstitial diffusion along the[001] direction (parallel to the c axis) has the lowest activation barrier in rutile TiO2, which is in excellent agreement with former experimental and theoretical data.
      Corresponding author: Fang Liang, lfang@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61332003) and the Natural Science Foundation of Hunan Province, China (Grant No. 2015JJ3024).
    [1]

    Kim S, Brown S L, Rossnagel S M, Bruley J, Copel M, Hopstaken M J, Narayanan V, Frank M M 2010 J. Appl. Phys. 107 054102

    [2]

    Tang Z, Fang L, Xu N, Liu R 2015 J. Appl. Phys. 118 80

    [3]

    Tang Z, Chi Y, Fang L, Liu R, Yi X 2014 J. Nanosci. Nanotechnol. 14 1494

    [4]

    Choi B, Jeong D, Kim S, Rohde C, Choi S, Oh J, Kim H, Hwang C, Szot K, Waser R 2005 J. Appl. Phys. 98 033715

    [5]

    Magyari-Köpe B, Tendulkar M, Park S G, Lee H D, Nishi Y 2011 Nanotechnology 22 254029

    [6]

    Ghenzi N, Sánchez M J, Rubi D, Rozenberg M J, Urdaniz C, Weissman M, Levy P 2014 Appl. Phys. Lett. 104 1625

    [7]

    Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Acta Phys. Sin. 61 077101 (in Chinese)[张小超, 赵丽军, 樊彩梅, 梁镇海, 韩培德 2012 61 077101]

    [8]

    Hou Q Y, Wu Y, Zhao C W 2013 Acta Phys. Sin. 62 237101 (in Chinese)[侯清玉, 乌云, 赵春旺 2013 62 237101]

    [9]

    Lin Q L, Li G P, Xu N N, Liu H, Wang C L 2017 Acta Phys. Sin. 66 037101 (in Chinese)[林俏露, 李公平, 许楠楠, 刘欢, 王苍龙 2017 66 037101]

    [10]

    Peng H 2008 Phys. Lett. A 372 1527

    [11]

    Smyth D M 2000 The Defect Chemistry of Metal Oxide (New York:Oxford University Press) pp95-219

    [12]

    Huntington H B, Sullivan G A 1965 Phys. Rev. Lett. 14 932

    [13]

    Iddir H,Öğt S, Zapol P, Browning N D 2007 Phys. Rev. B 75 794

    [14]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I 2009 J. Phys.:Condens. Matter 21 395502

    [15]

    Andreussi O, Brumme T, Bunau O, Buongiorno M N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N 2017 J. Phys.:Condens. Matter 29 465901

    [16]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2007 Phys. Rev. Lett. 101 136406

    [17]

    Lejaeghere K, Bihlmayer G, Björkman T, Blaha P, Blgel S, Blum V, Caliste D, Castelli I E, Clark S J, Dal C A 2016 Science 351 aad3000

    [18]

    Sheppard D, Terrell R, Henkelman G 2008 J. Chem. Phys. 128 134106

    [19]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272

    [20]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354

    [21]

    Sanville E, Kenny S D, Smith R, Henkelman G 2007 J. Comput. Chem. 28 899

    [22]

    Tang W, Sanville E, Henkelman G 2009 J. Phys.:Condens. Matter 21 084204

    [23]

    Yu M, Trinkle D R 2011 J. Chem. Phys. 134 064111

    [24]

    Nowotny J 2012 Oxide Semiconductors for Solar Energy Conversion-Titanium Dioxide (New York:CRC Press) p150

    [25]

    Diebold U 2003 Surf. Sci. Rep. 48 53

    [26]

    Baumard J F 1976 Solid State Commun. 20 859

    [27]

    Nowotny M, Bak T, Nowotny J 2006 J. Phys. Chem. B 110 16292

    [28]

    Nowotny J, Bak T, Nowotny M, Sheppard C 2005 Phys. Status Solidi b 242 R91

  • [1]

    Kim S, Brown S L, Rossnagel S M, Bruley J, Copel M, Hopstaken M J, Narayanan V, Frank M M 2010 J. Appl. Phys. 107 054102

    [2]

    Tang Z, Fang L, Xu N, Liu R 2015 J. Appl. Phys. 118 80

    [3]

    Tang Z, Chi Y, Fang L, Liu R, Yi X 2014 J. Nanosci. Nanotechnol. 14 1494

    [4]

    Choi B, Jeong D, Kim S, Rohde C, Choi S, Oh J, Kim H, Hwang C, Szot K, Waser R 2005 J. Appl. Phys. 98 033715

    [5]

    Magyari-Köpe B, Tendulkar M, Park S G, Lee H D, Nishi Y 2011 Nanotechnology 22 254029

    [6]

    Ghenzi N, Sánchez M J, Rubi D, Rozenberg M J, Urdaniz C, Weissman M, Levy P 2014 Appl. Phys. Lett. 104 1625

    [7]

    Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Acta Phys. Sin. 61 077101 (in Chinese)[张小超, 赵丽军, 樊彩梅, 梁镇海, 韩培德 2012 61 077101]

    [8]

    Hou Q Y, Wu Y, Zhao C W 2013 Acta Phys. Sin. 62 237101 (in Chinese)[侯清玉, 乌云, 赵春旺 2013 62 237101]

    [9]

    Lin Q L, Li G P, Xu N N, Liu H, Wang C L 2017 Acta Phys. Sin. 66 037101 (in Chinese)[林俏露, 李公平, 许楠楠, 刘欢, 王苍龙 2017 66 037101]

    [10]

    Peng H 2008 Phys. Lett. A 372 1527

    [11]

    Smyth D M 2000 The Defect Chemistry of Metal Oxide (New York:Oxford University Press) pp95-219

    [12]

    Huntington H B, Sullivan G A 1965 Phys. Rev. Lett. 14 932

    [13]

    Iddir H,Öğt S, Zapol P, Browning N D 2007 Phys. Rev. B 75 794

    [14]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I 2009 J. Phys.:Condens. Matter 21 395502

    [15]

    Andreussi O, Brumme T, Bunau O, Buongiorno M N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N 2017 J. Phys.:Condens. Matter 29 465901

    [16]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2007 Phys. Rev. Lett. 101 136406

    [17]

    Lejaeghere K, Bihlmayer G, Björkman T, Blaha P, Blgel S, Blum V, Caliste D, Castelli I E, Clark S J, Dal C A 2016 Science 351 aad3000

    [18]

    Sheppard D, Terrell R, Henkelman G 2008 J. Chem. Phys. 128 134106

    [19]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272

    [20]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354

    [21]

    Sanville E, Kenny S D, Smith R, Henkelman G 2007 J. Comput. Chem. 28 899

    [22]

    Tang W, Sanville E, Henkelman G 2009 J. Phys.:Condens. Matter 21 084204

    [23]

    Yu M, Trinkle D R 2011 J. Chem. Phys. 134 064111

    [24]

    Nowotny J 2012 Oxide Semiconductors for Solar Energy Conversion-Titanium Dioxide (New York:CRC Press) p150

    [25]

    Diebold U 2003 Surf. Sci. Rep. 48 53

    [26]

    Baumard J F 1976 Solid State Commun. 20 859

    [27]

    Nowotny M, Bak T, Nowotny J 2006 J. Phys. Chem. B 110 16292

    [28]

    Nowotny J, Bak T, Nowotny M, Sheppard C 2005 Phys. Status Solidi b 242 R91

  • [1] Yan Li-Bin, Bai Yu-Rong, Li Pei, Liu Wen-Bo, He Huan, He Chao-Hui, Zhao Xiao-Hong. First-principles calculations of point defect migration mechanisms in InP. Acta Physica Sinica, 2024, 73(18): 183101. doi: 10.7498/aps.73.20240754
    [2] Xu Si-Yuan, Zhang Zhao-Fu, Wang Jun, Liu Xue-Fei, Guo Yu-Zheng. First-principles calculation of intrinsic point defects and doping performance of MoSi2N4. Acta Physica Sinica, 2024, 73(8): 086801. doi: 10.7498/aps.73.20231931
    [3] Zhang Jiang-Lin, Wang Zhong-Min, Wang Dian-Hui, Hu Chao-Hao, Wang Feng, Gan Wei-Jiang, Lin Zhen-Kun. First principles study of V/Pd interface interactions and their hydrogen absorption properties. Acta Physica Sinica, 2023, 72(16): 168801. doi: 10.7498/aps.72.20230132
    [4] Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping. First-principles study of electronic structure and optical properties of monolayer defective tellurene. Acta Physica Sinica, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [5] Liao Jing-Jing, Lin Fu-Jun. Diffusion and separation of binary mixtures of chiral active particles driven by time-delayed feedback. Acta Physica Sinica, 2020, 69(22): 220501. doi: 10.7498/aps.69.20200505
    [6] Zhang Mei-Ling, Chen Yu-Hong, Zhang Cai-Rong, Li Gong-Ping. Effect of intrinsic defects and copper impurities co-existing on electromagnetic optical properties of ZnO: First principles study. Acta Physica Sinica, 2019, 68(8): 087101. doi: 10.7498/aps.68.20182238
    [7] Zhang Heng, Huang Yan, Shi Wang-Zhou, Zhou Xiao-Hao, Chen Xiao-Shuang. First-principles study on the diffusion dynamics of Al atoms on Si surface. Acta Physica Sinica, 2019, 68(20): 207302. doi: 10.7498/aps.68.20190783
    [8] Yang Liang, Wang Cai-Zhuang, Lin Shi-Wei, Cao Yang. First-principles investigation of oxygen diffusion mechanism in -titanium crystals. Acta Physica Sinica, 2017, 66(11): 116601. doi: 10.7498/aps.66.116601
    [9] Lin Qiao-Lu, Li Gong-Ping, Xu Nan-Nan, Liu Huan, Wang Cang-Long. A first-principles study on magnetic properties of the intrinsic defects in rutile TiO2. Acta Physica Sinica, 2017, 66(3): 037101. doi: 10.7498/aps.66.037101
    [10] Zhu Yue, Li Yong-Cheng, Wang Fu-He. First principles study on the H2 diffusion and desorption at the Li-doped MgH2(001) surface. Acta Physica Sinica, 2016, 65(5): 056801. doi: 10.7498/aps.65.056801
    [11] Yang Biao, Wang Li-Ge, Yi Yong, Wang En-Ze, Peng Li-Xia. First-principles calculations of the diffusion behaviors of C, N and O atoms in V metal. Acta Physica Sinica, 2015, 64(2): 026602. doi: 10.7498/aps.64.026602
    [12] Pan Feng-Chun, Lin Xue-Ling, Chen Huan-Ming. Electronic structure and optical properties of C doped rutile TiO2: the first-principles calculations. Acta Physica Sinica, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [13] Zhu Hong-Qiang, Feng Qing. Microscopic characteristics mechanism of optical gas sensing material rutile titanium dioxide (110) surface adsorption of CO molecules. Acta Physica Sinica, 2014, 63(13): 133101. doi: 10.7498/aps.63.133101
    [14] Wang Tao, Chen Jian-Feng, Le Yuan. First-principles investigation of iodine doped rutile TiO2(110) surface. Acta Physica Sinica, 2014, 63(20): 207302. doi: 10.7498/aps.63.207302
    [15] Gao Xue-Yun, Wang Hai-Yan, Li Chun-Long, Ren Hui-Ping, Li De-Chao, Liu Zong-Chang. First-principles study of the effect of lanthanum on the Cu diffusion mechanism in bcc-Fe. Acta Physica Sinica, 2014, 63(24): 248101. doi: 10.7498/aps.63.248101
    [16] Hou Qing-Yu, Wu Yun Ge Ri, Zhao Chun-Wang. Effects of the concentration of heavily oxygen vacancy of rutile TiO2 on electric conductivity performance from first principles study. Acta Physica Sinica, 2013, 62(16): 167201. doi: 10.7498/aps.62.167201
    [17] Peng Li-Ping, Xia Zheng-Cai, Yin Jian-Wu. First-principles calculation of rutile and anatase TiO2 intrinsic defect. Acta Physica Sinica, 2012, 61(3): 037103. doi: 10.7498/aps.61.037103
    [18] He Xu, He Lin, Tang Ming-Jie, Xu Ming. Effects of the vacancy point-defect on electronic structure and optical properties of LiF under high pressure: A first principles investigation. Acta Physica Sinica, 2011, 60(2): 026102. doi: 10.7498/aps.60.026102
    [19] Liu Bai-Nian, Ma Ying, Zhou Yi-Chun. First-principles study of defect properties in tetragonal BaTiO3. Acta Physica Sinica, 2010, 59(5): 3377-3383. doi: 10.7498/aps.59.3377
    [20] Cheng Ping, Zhang Yu-Ming, Zhang Yi-Men, Wang Yue-Hu, Guo Hui. Stability of the intrinsic defects in unintentionally doped 4H-SiC epitaxial layer. Acta Physica Sinica, 2010, 59(5): 3542-3546. doi: 10.7498/aps.59.3542
Metrics
  • Abstract views:  6852
  • PDF Downloads:  197
  • Cited By: 0
Publishing process
  • Received Date:  26 April 2018
  • Accepted Date:  26 May 2018
  • Published Online:  05 September 2018

/

返回文章
返回
Baidu
map