-
利用基于密度泛函理论的第一性原理研究了I掺杂金红石TiO2(110)表面的形成能和电子结构,分析了不同掺杂位置的结构对TiO2光催化性能的影响. 计算表明,氧化环境下I最容易替代掺杂表面五配位的Ti,而还原环境下最容易替代掺杂表面的桥位氧. I替位Ti或I替位O都能降低禁带宽度,可能使TiO2吸收带出现红移现象或产生在可见光区的吸收,其中I替位桥位氧的禁带宽度最小. 吸收光谱表明,I掺杂不仅能提高TiO2可见光响应,同时可增加紫外光的吸收能量,提高其可见光及紫外光下的光催化性能.
-
关键词:
- 第一性原理 /
- I掺杂 /
- 金红石相TiO2(110) /
- 光催化
The formation energy and electronic structure of iodine (I)-doped rutile TiO2(110) surface are investigated using the first-principles method based on the density functional theory. The results indicate that I prefers to replace the five-coordinated Ti in the oxidation environment and the bridging O could be replaced by I preferentially in the reducing environment. Whether I replaces O or Ti can reduce the band gap and cause the red shift of the absorption band edge or produce the absorption in the visible light. The band gap narrows most obviously when I replaces the bridging O. The absorption spectrum shows that I doping could not only improve its visible light response but also enhance its absorption peak of UV-light, leading to the improvement in photocatalytic performance under visible and UV light.-
Keywords:
- first-principles /
- I doping /
- rutile TiO2(110) surface /
- photocatalysis
[1] Fox M A, Dulay M T 1993 Chem. Rev. 93 341
[2] Hoffmann M R, Martin S T, Choi W, Bahnemann D W 1995 Chem. Rev. 95 69
[3] Hashimoto K, Irie H, Fujishima A 2005 Jpn. J. Appl. Phys. 44 8269
[4] Fujishima A, Zhang X T, Tryk D A 2008 Surf. Sci. Rep. 63 515
[5] Lewis N S 2007 Science 315 798
[6] Zhang Z D, Hou Q Y, Li C, Zhao C W 2012 Acta Phys. Sin. 61 117102 (in Chinese) [张振铎, 侯清玉, 李聪, 赵春旺 2012 61 117102]
[7] Gao P, Wu J, Liu Q J, Zhou W F 2010 Chin. Phys. B 19 087103
[8] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science 293 269
[9] Varley J B, Janotti A, van de Walle C G 2011 Adv. Mater. 23 2343
[10] Gohin M, Maurin I, Gacoin T, Boilot J P 2010 J. Mater. Chem. 20 8070
[11] Ma D, Xin Y J, Gao M C, Wu J 2014 Appl. Catal. B: Environ. 147 49
[12] Harb M, Sautet P, Raybaud P 2013 J. Phys. Chem. C 117 8892
[13] Liu G L, Han C, Pelaez M, Zhu D W, Liao S J, Likodimos V, Loannidis N 2012 Nanotechnology 23 294003
[14] Yang K S, Dai Y, Huang B B, Whangbo M H 2009 J. Phys. Chem. C 113 2624
[15] Xu L, Tang C Q, Qian J 2010 Acta Phys. Sin. 59 2721 (in Chinese) [徐凌, 唐超群, 钱俊 2010 59 2721]
[16] Xu L, Tang C Q, Qian J, Huang Z B 2010 Appl. Surf. Sci. 256 2668
[17] Zheng S K, Wu G H, Liu L 2013 Acta Phys. Sin. 62 043102 (in Chinese) [郑树凯, 吴国浩, 刘磊 2013 62 043102]
[18] Guo M L, Zhang X D, Liang C T 2011 Physica B 406 3354
[19] Irie H, Watanabe Y, Hashimoto K 2003 J. Phys. Chem. B 107 5483
[20] Irie H, Washizuka S, Hashimoto K 2006 Thin Solid Films 510 21
[21] Ohno T, Mitsui T, Matsumura M 2003 Chem. Lett. 32 364
[22] Tojo S, Tachikawa T, Fujitsuka M, Majima T 2008 J. Phys. Chem. C 112 14948
[23] Liu G, Chen Z G, Dong C L, Zhao Y N, Li F, Lu G Q, Cheng H M 2006 J. Phys. Chem. B 110 20823
[24] He J F, Liu Q H, Sun Z H, Yan W S, Zhang G B, Qi Z M, Xu P S, Wu Z Y, Wei S Q 2010 J. Phys. Chem. C 114 6035
[25] Diebold U 2003 Surf. Sci. Rep. 48 53
[26] Djerdj I, Tonejc A M 2006 J. Alloys Compd. 413 159
[27] Sutassana N P, Smith M F, Kwiseon K, Du M H 2006 Phys. Rev B 73 125205
[28] John P P, Mel L 1983 Phys. Rev. Lett. 51 1884
[29] Lindsay R, Wander A, Ernst A, Montanari B, Thornton G, Harrison N M 2005 Phys. Rev. Lett. 94 246102
[30] Thompson S J, Lewis S P 2006 Phys. Rev. B 73 073403
[31] Nambu A, Graciani J, Rodriguez J A, Wu Q, Fujita E, Sanz J F 2006 J. Chem. Phys. 125 094706
[32] Jin H, Dai Y, Wei W, Huang B B 2008 J. Phys. D: Appl. Phys. 41 195411
[33] Long R, English N J 2009 J. Phys. Chem. C 113 9423
-
[1] Fox M A, Dulay M T 1993 Chem. Rev. 93 341
[2] Hoffmann M R, Martin S T, Choi W, Bahnemann D W 1995 Chem. Rev. 95 69
[3] Hashimoto K, Irie H, Fujishima A 2005 Jpn. J. Appl. Phys. 44 8269
[4] Fujishima A, Zhang X T, Tryk D A 2008 Surf. Sci. Rep. 63 515
[5] Lewis N S 2007 Science 315 798
[6] Zhang Z D, Hou Q Y, Li C, Zhao C W 2012 Acta Phys. Sin. 61 117102 (in Chinese) [张振铎, 侯清玉, 李聪, 赵春旺 2012 61 117102]
[7] Gao P, Wu J, Liu Q J, Zhou W F 2010 Chin. Phys. B 19 087103
[8] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science 293 269
[9] Varley J B, Janotti A, van de Walle C G 2011 Adv. Mater. 23 2343
[10] Gohin M, Maurin I, Gacoin T, Boilot J P 2010 J. Mater. Chem. 20 8070
[11] Ma D, Xin Y J, Gao M C, Wu J 2014 Appl. Catal. B: Environ. 147 49
[12] Harb M, Sautet P, Raybaud P 2013 J. Phys. Chem. C 117 8892
[13] Liu G L, Han C, Pelaez M, Zhu D W, Liao S J, Likodimos V, Loannidis N 2012 Nanotechnology 23 294003
[14] Yang K S, Dai Y, Huang B B, Whangbo M H 2009 J. Phys. Chem. C 113 2624
[15] Xu L, Tang C Q, Qian J 2010 Acta Phys. Sin. 59 2721 (in Chinese) [徐凌, 唐超群, 钱俊 2010 59 2721]
[16] Xu L, Tang C Q, Qian J, Huang Z B 2010 Appl. Surf. Sci. 256 2668
[17] Zheng S K, Wu G H, Liu L 2013 Acta Phys. Sin. 62 043102 (in Chinese) [郑树凯, 吴国浩, 刘磊 2013 62 043102]
[18] Guo M L, Zhang X D, Liang C T 2011 Physica B 406 3354
[19] Irie H, Watanabe Y, Hashimoto K 2003 J. Phys. Chem. B 107 5483
[20] Irie H, Washizuka S, Hashimoto K 2006 Thin Solid Films 510 21
[21] Ohno T, Mitsui T, Matsumura M 2003 Chem. Lett. 32 364
[22] Tojo S, Tachikawa T, Fujitsuka M, Majima T 2008 J. Phys. Chem. C 112 14948
[23] Liu G, Chen Z G, Dong C L, Zhao Y N, Li F, Lu G Q, Cheng H M 2006 J. Phys. Chem. B 110 20823
[24] He J F, Liu Q H, Sun Z H, Yan W S, Zhang G B, Qi Z M, Xu P S, Wu Z Y, Wei S Q 2010 J. Phys. Chem. C 114 6035
[25] Diebold U 2003 Surf. Sci. Rep. 48 53
[26] Djerdj I, Tonejc A M 2006 J. Alloys Compd. 413 159
[27] Sutassana N P, Smith M F, Kwiseon K, Du M H 2006 Phys. Rev B 73 125205
[28] John P P, Mel L 1983 Phys. Rev. Lett. 51 1884
[29] Lindsay R, Wander A, Ernst A, Montanari B, Thornton G, Harrison N M 2005 Phys. Rev. Lett. 94 246102
[30] Thompson S J, Lewis S P 2006 Phys. Rev. B 73 073403
[31] Nambu A, Graciani J, Rodriguez J A, Wu Q, Fujita E, Sanz J F 2006 J. Chem. Phys. 125 094706
[32] Jin H, Dai Y, Wei W, Huang B B 2008 J. Phys. D: Appl. Phys. 41 195411
[33] Long R, English N J 2009 J. Phys. Chem. C 113 9423
计量
- 文章访问数: 6822
- PDF下载量: 824
- 被引次数: 0