Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improved hybrid plasmonic microcavity laser

Dong Wei Wang Zhi-Bin

Citation:

Improved hybrid plasmonic microcavity laser

Dong Wei, Wang Zhi-Bin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, an improved hybrid surface plasmon nanolaser with a gain medium ridge and a layer of air gap is proposed. In order to achieve low propagation loss and sub-wavelength field confinement, a triangular air gap and a 50 nm microcavity end face silver mirror are adopted in this structure, and the combination of this particular triangular structure and silver mirror effectively improves the performance of nano-laser. In this paper, we numerically simulate the waveguide by using the finite-element method. The COMSOL multiphysics software is a superior numerical simulation software to simulate the real physical phenomena based on the finite element method. On the basic of the COMSOL multiphysics software, a two-dimensional cross-section model and a three-dimensional model are built, the transmission performance and microcavity performance of the improved structure are analyzed in detail at a working wavelength of 1550 nm. Some quantities including the electric field distribution, transmission length, normalized mode field area, average energy density, foundation modal volume, quality factor of the structure, threshold gain, quality factor, effective modal volume, and Purcell factor are considered here which are dependent on the dielectric constant and geometrical parameters. The results indicate that on a two-dimensional scale, the contradiction between transmission loss and transmission distance can be effectively solved by the guidance of Fom value, and the IHPM laser structure with optimal transmission characteristics is obtained under the guidance of quality factor and foundation modal volume. A deep sub-wavelength constraint on light is achieved:the propagation length of the electromagnetic mode reaches a millimeter level and the longest distance can reach 1.29 mm. When testing the microcavity performance of the laser separately on a two-dimensional scale and three-dimensional scale, the high quality factor, low gain threshold, ultra-small effective mode volume of 0.001092 μm3 and ultra-high Purcell factor of 8.29×105 are obtained by adjusting the structural parameters and plating a 50 nm-thick silver layer on the end face of the laser microcavity. Compared with the previous structure without air gaps, the designed structure has a low laser lasing threshold and strong micro-cavity local capability when these two structural parameters are unified. The designed hybrid surface plasmon nanolaser may serve as a fundamental building block for various functional photonic components and can have applications such as in sensing, nanofocusing, and nanolasing.
      Corresponding author: Wang Zhi-Bin, ioe@ysu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61107039), the Natural Science Foundation of Hebei Province, China (Grant No. F2012203202), and the "100 Talents Project" of Hebei Province, China (Grant No. 4570018).
    [1]

    Han Q Y, Tang J C, Zhang S, Wang C, Ma H Q, Yu L, Jiao R Z (in Chinese) [韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍 2012 61 135202]

    [2]

    Zhang Y, Zhang Z 2016 Plasmonics 12 1

    [3]

    Wang M S, Zhao C L, Miao X Y, Zhao Y H, Rufo J, Liu Y J, Huang T J, Zheng Y B 2015 Small (Germany:Weinheim an der Bergstrasse) 11 4422

    [4]

    O'Dell D, Serey X, Erickson D 2014 Appl. Phys. Lett. 104 043112

    [5]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229

    [6]

    Berini P 2009 Adv. Opt. Photon. News 1 484

    [7]

    Ly-Gagnon D S, Kocabas S E, Miller D A B 2008 IEEE J. Sel. Top. Quantum Electron. 14 1473

    [8]

    Fu Y, Hu X, Lu C, Yue S, Yang H, Gong Q 2012 Nano Lett. 12 5784

    [9]

    Bian Y, Zheng Z, Zhao X, Liu L, Liu J, Zhu J, Zhou T 2013 Opt. Commun. 287 245

    [10]

    Avrutsky I, Soref R, Buchwald W 2010 Opt. Express 18 348

    [11]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photon. 2 496.

    [12]

    Chang S W, Chuang S L 2008 IEEE 2008 International Nano-Optoelectronics Workshop (i-Now) Japan, Tokyo, August 2-15, 2008 p195

    [13]

    Zhang Z G 2015 M. S. Dissertation (Qinhuangdao:Yanshan University) (in Chinese) [张振国 2015 硕士学位论文 (秦皇岛:燕山大学)]

    [14]

    Purcell E M 1995 Phys. Rev. 69 11

    [15]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal1 G, Zhang X 2009 Nature 461 629

    [16]

    Wei W 2015 M. S. Dissertation (Beijing:Beijing University of Posts and Telecommunications) (in Chinese) [魏巍 2015 博士学位论文 (北京:北京邮电大学)]

    [17]

    Li S X, Bai Z C, Huang Z, Zhang X, Qin S J, Mao W X 2012 Acta Phys. Sin. 61 115201 (in Chinese) [李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪 2012 61 115201]

    [18]

    Li Q, Yu B Q, Li Z F, Wang X F, Zhang Z C, Pan L F 2017 Chin. Phys. B 26 085202

    [19]

    Zou C L, Sun F W, Xiao Y F, Dong C H, Chen X D, Cui J M, Gong Q, Han Z F, Guo G C 2010 Appl. Phys. Lett. 97 183102

    [20]

    Zhang B, Bian Y, Ren L, Guo F, Tang S Y, Mao Z, Liu X, Sun J J, Gong J Y, Guo X S, Huang T J 2017 Sci. Rep. 7 40479

    [21]

    Huang H, Zhao Q, Hong K, Xu Q, Huang X 2014 Physica E 57 113

    [22]

    Tian J, Sun M 2016 Eur. Phys. J. D 70 4

    [23]

    Piao R Q 2016 M. S. Dissertation (Qinhuangdao:Yanshan University) (in Chinese) [朴瑞琦 2016 硕士学位论文 (秦皇岛:燕山大学)]

    [24]

    Dai D, Shi Y, He S, Wosinski L, Thylen L 2011 Opt. Express 19 12925

    [25]

    Gamzatov A G, Batdalov A B, Kamilov I K, Kaul A R, Babushkina N A 2013 Appl. Phys. Lett. 102 032404

    [26]

    Chu H S, Bai P, Li E P, Hoefer W R J 2011 Plasmonics 6 591

    [27]

    Zhu L, Zhao Y 2010 J. Opt. Soc. Am. B 27 1260

    [28]

    Liu J T, Xu B Z, Zhang J, Cai L K, Song G F 2012 Chin. Phys. B 21 107303

    [29]

    Cheng P J, Weng C Y, Chang S W, Lin T R, Tien C H 2013 Opt. Express 21 13479

    [30]

    Wei B, Sheng X Z 2007 The Principle and Application of the Laser (Chongqing:Chongqing University Press) pp116-120 (in Chinese) [魏彪, 盛新志 2007激光原理(重庆:重庆大学出版社) 第116–120页]

    [31]

    Sun W Z 2016 M. S. Dissertation (Haerbin:Harbin Institute of Technology) (in Chinese) [孙文钊 2016 硕士学位论文 (哈尔滨:哈尔滨工业大学)]

    [32]

    Chou B T, Chou Y H, Chiang C K, Wu Y M 2015 IEEE J. Sel. Top. Quantum Electron. 21 6

    [33]

    Wei W, Xin Y, Xia Z 2016 Sci. Rep. 6 33063

    [34]

    Lu Q, Shu F J, Zou C L 2013 Opt. Lett. 38 5311

  • [1]

    Han Q Y, Tang J C, Zhang S, Wang C, Ma H Q, Yu L, Jiao R Z (in Chinese) [韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍 2012 61 135202]

    [2]

    Zhang Y, Zhang Z 2016 Plasmonics 12 1

    [3]

    Wang M S, Zhao C L, Miao X Y, Zhao Y H, Rufo J, Liu Y J, Huang T J, Zheng Y B 2015 Small (Germany:Weinheim an der Bergstrasse) 11 4422

    [4]

    O'Dell D, Serey X, Erickson D 2014 Appl. Phys. Lett. 104 043112

    [5]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229

    [6]

    Berini P 2009 Adv. Opt. Photon. News 1 484

    [7]

    Ly-Gagnon D S, Kocabas S E, Miller D A B 2008 IEEE J. Sel. Top. Quantum Electron. 14 1473

    [8]

    Fu Y, Hu X, Lu C, Yue S, Yang H, Gong Q 2012 Nano Lett. 12 5784

    [9]

    Bian Y, Zheng Z, Zhao X, Liu L, Liu J, Zhu J, Zhou T 2013 Opt. Commun. 287 245

    [10]

    Avrutsky I, Soref R, Buchwald W 2010 Opt. Express 18 348

    [11]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photon. 2 496.

    [12]

    Chang S W, Chuang S L 2008 IEEE 2008 International Nano-Optoelectronics Workshop (i-Now) Japan, Tokyo, August 2-15, 2008 p195

    [13]

    Zhang Z G 2015 M. S. Dissertation (Qinhuangdao:Yanshan University) (in Chinese) [张振国 2015 硕士学位论文 (秦皇岛:燕山大学)]

    [14]

    Purcell E M 1995 Phys. Rev. 69 11

    [15]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal1 G, Zhang X 2009 Nature 461 629

    [16]

    Wei W 2015 M. S. Dissertation (Beijing:Beijing University of Posts and Telecommunications) (in Chinese) [魏巍 2015 博士学位论文 (北京:北京邮电大学)]

    [17]

    Li S X, Bai Z C, Huang Z, Zhang X, Qin S J, Mao W X 2012 Acta Phys. Sin. 61 115201 (in Chinese) [李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪 2012 61 115201]

    [18]

    Li Q, Yu B Q, Li Z F, Wang X F, Zhang Z C, Pan L F 2017 Chin. Phys. B 26 085202

    [19]

    Zou C L, Sun F W, Xiao Y F, Dong C H, Chen X D, Cui J M, Gong Q, Han Z F, Guo G C 2010 Appl. Phys. Lett. 97 183102

    [20]

    Zhang B, Bian Y, Ren L, Guo F, Tang S Y, Mao Z, Liu X, Sun J J, Gong J Y, Guo X S, Huang T J 2017 Sci. Rep. 7 40479

    [21]

    Huang H, Zhao Q, Hong K, Xu Q, Huang X 2014 Physica E 57 113

    [22]

    Tian J, Sun M 2016 Eur. Phys. J. D 70 4

    [23]

    Piao R Q 2016 M. S. Dissertation (Qinhuangdao:Yanshan University) (in Chinese) [朴瑞琦 2016 硕士学位论文 (秦皇岛:燕山大学)]

    [24]

    Dai D, Shi Y, He S, Wosinski L, Thylen L 2011 Opt. Express 19 12925

    [25]

    Gamzatov A G, Batdalov A B, Kamilov I K, Kaul A R, Babushkina N A 2013 Appl. Phys. Lett. 102 032404

    [26]

    Chu H S, Bai P, Li E P, Hoefer W R J 2011 Plasmonics 6 591

    [27]

    Zhu L, Zhao Y 2010 J. Opt. Soc. Am. B 27 1260

    [28]

    Liu J T, Xu B Z, Zhang J, Cai L K, Song G F 2012 Chin. Phys. B 21 107303

    [29]

    Cheng P J, Weng C Y, Chang S W, Lin T R, Tien C H 2013 Opt. Express 21 13479

    [30]

    Wei B, Sheng X Z 2007 The Principle and Application of the Laser (Chongqing:Chongqing University Press) pp116-120 (in Chinese) [魏彪, 盛新志 2007激光原理(重庆:重庆大学出版社) 第116–120页]

    [31]

    Sun W Z 2016 M. S. Dissertation (Haerbin:Harbin Institute of Technology) (in Chinese) [孙文钊 2016 硕士学位论文 (哈尔滨:哈尔滨工业大学)]

    [32]

    Chou B T, Chou Y H, Chiang C K, Wu Y M 2015 IEEE J. Sel. Top. Quantum Electron. 21 6

    [33]

    Wei W, Xin Y, Xia Z 2016 Sci. Rep. 6 33063

    [34]

    Lu Q, Shu F J, Zou C L 2013 Opt. Lett. 38 5311

  • [1] Gao Rong, Yang Ya-Nan, Zhan Chen-Yi, Zhang Zong-Zhen, Deng Yi, Wang Zi-Xiao, Liang Kun, Feng Su-Chun. Design of optical frequency comb based on dual frequency pumped normal dispersion silicon carbide microresonator. Acta Physica Sinica, 2024, 73(3): 034203. doi: 10.7498/aps.73.20231442
    [2] Fang Jing-Yue, Wen Zhi-Hao, Zhu Hai-Bi-Tao, Li Xin-Xing, Deng Lian-Wen. 16-channel snapshot multispectral imaging based on integrated Fabry Perot microcavity array. Acta Physica Sinica, 2024, 73(7): 074205. doi: 10.7498/aps.73.20231775
    [3] Mu Peng-Hua, Chen Hao, Liu Guo-Peng, Hu Guo-Si. Chaotic time delay feature cancellation and bandwidth enhancement in cascaded-coupled nanolasers. Acta Physica Sinica, 2024, 73(10): 104204. doi: 10.7498/aps.73.20231643
    [4] Xu Qi, Sun Xiao-Wei, Song Ting, Wen Xiao-Dong, Liu Xi-Xuan, Wang Yi-Wen, Liu Zi-Jiang. Novel one-dimensional optomechanical crystal nanobeam with high optomechanical coupling rate under different defect states. Acta Physica Sinica, 2021, 70(22): 224210. doi: 10.7498/aps.70.20210925
    [5] Cao Ming-Peng, Wu Xiao-Peng, Guan Hong-Shan, Shan Guang-Bao, Zhou Bin, Yang Li-Hong, Yang Yin-Tang. Electrothermal coupling analysis of three-dimensional integrated microsystem based on dual cell method. Acta Physica Sinica, 2021, 70(7): 074401. doi: 10.7498/aps.70.20201628
    [6] Zhang Bai-Fu, Zhu Kang, Wu Heng, Hu Hai-Feng, Shen Zhe, Xu Ji. Numerical study of metallic semiconductor nanolasers with double-concave cavity structures. Acta Physica Sinica, 2019, 68(22): 224201. doi: 10.7498/aps.68.20190972
    [7] Zhao Yun-Jin, Tian Meng, Huang Yong-Gang, Wang Xiao-Yun, Yang Hong, Mi Xian-Wu. Renormalization of photon dyadic Green function by finite element method and its applications in the study of spontaneous emission rate and energy level shift. Acta Physica Sinica, 2018, 67(19): 193102. doi: 10.7498/aps.67.20180898
    [8] Guan Yi-Jun, Sun Hong-Xiang, Yuan Shou-Qi, Ge Yong, Xia Jian-Ping. Propagation characteristics of laser-generated surface acoustic waves in composite plate with gradient changes of near-surface viscous moduli. Acta Physica Sinica, 2016, 65(22): 224201. doi: 10.7498/aps.65.224201
    [9] Wang Yue, Liu Li-Wei, Hu Si-Yi, Li Qi-Yang, Sun Zhen-Hao, Miao Xin-Hui, Yang Xiao-Chuan, Zhang Xi-He. Simulation study based on the COMSOL Mutiphysics to the surface plasmon resonance of Cu2S quantum dots. Acta Physica Sinica, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [10] Shu Fang-Jie. Analysis of features of the microdisk cavity perpendicular coupler. Acta Physica Sinica, 2013, 62(6): 064212. doi: 10.7498/aps.62.064212
    [11] Huang Hong, Zhao Qing, Jiao Jiao, Liang Gao-Feng, Huang Xiao-Ping. Study of plasmonic nanolaser based on the deep subwavelength scale. Acta Physica Sinica, 2013, 62(13): 135201. doi: 10.7498/aps.62.135201
    [12] Yu Ge, Han Qi-Gang, Li Ming-Zhe, Jia Xiao-Peng, Ma Hong-An, Li Yue-Fen. Finite element analysis of the high-pressure tungsten carbide radius-anvil. Acta Physica Sinica, 2012, 61(4): 040702. doi: 10.7498/aps.61.040702
    [13] Yuan Ling, Sun Kai-Hua, Cui Yi-Ping, Shen Zhong-Hua, Ni Xiao-Wu. Experimental and theoretical analysis of the dispersion of laser-induced surface acoustic wave due to surface roughness. Acta Physica Sinica, 2012, 61(1): 014210. doi: 10.7498/aps.61.014210
    [14] Tang Tian-Tian, Wang De-Hua, Huang Kai-Yun. Study of the photodetachment of H- in a microcavity. Acta Physica Sinica, 2011, 60(5): 053203. doi: 10.7498/aps.60.053203
    [15] Han Qi-Gang, Ma Hong-An, Xiao Hong-Yu, Li Rui, Zhang Cong, Li Zhan-Chang, Tian Yu, Jia Xiao-Peng. Finite element method study on the temperature distribution in the cell of large single crystal diamond. Acta Physica Sinica, 2010, 59(3): 1923-1927. doi: 10.7498/aps.59.1923
    [16] Liu Quan-Xi, Zhong Ming. Analysis on thermal effect of laser-diode array end-pumped composite rod laser by finite element method. Acta Physica Sinica, 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [17] Han Qi-Gang, Jia Xiao-Peng, Ma Hong-An, Li Rui, Zhang Cong, Li Zhan-Chang, Tian Yu. Finite element simulations of thermal-stress on cemented tungsten carbide anvil used in cubic high pressure apparatus. Acta Physica Sinica, 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [18] Xu Deng. Stimulated emission properties of an organic salt-doped polymer film in microcavity. Acta Physica Sinica, 2009, 58(4): 2781-2784. doi: 10.7498/aps.58.2781
    [19] Numerical simulation of laser-generated ultrasonic waves in steel with gradient changes of near-surface elastic property. Acta Physica Sinica, 2007, 56(12): 7058-7063. doi: 10.7498/aps.56.7058
    [20] LU MING, XU SHAO-HUI, ZHANG SONG-TAO, HE JUN, XIONG ZU-HONG, DENG ZHEN-BO, DING XUN-MIN. OPTICAL PROPERTIES OF ORGANIC MICROCAVITY BASED ON POROUS SILICON BRAGG REFLECTOR. Acta Physica Sinica, 2000, 49(10): 2083-2088. doi: 10.7498/aps.49.2083
Metrics
  • Abstract views:  5508
  • PDF Downloads:  111
  • Cited By: 0
Publishing process
  • Received Date:  31 January 2018
  • Accepted Date:  23 July 2018
  • Published Online:  05 October 2018

/

返回文章
返回
Baidu
map