-
Acoustic focusing effect with broad bandwidth based on the temperature gradient distribution is studied. The propagation paths of the acoustic waves can be controlled by the temperature gradient distribution generated by two heat sources, which is adopted to realize the acoustic focusing effect. This focusing effect arises from the continuous change of the acoustic refractive index induced by the change of temperature, and has no reflection energy loss. Therefore, the acoustic focusing effect has the advantages of broad bandwidth and high focusing performance. In addition, we have investigated the influences of the factors (incident frequency, temperature of heat source, spatial distribution of interface, position of heat source, attenuation coefficient of the medium, and asymmetric distribution of heat source temperature) on the acoustic focusing effect in detail, and verified the feasibility of the acoustic focusing system by using aerogel based on temperature gradient distribution in single medium.
-
Keywords:
- acoustic focusing /
- temperature gradient /
- temperature field /
- aerogel
[1] Li J M, Tang P, Wang J J, Huang T, Lin F, Fang Z Y, Zhu X 2015 Acta Phys. Sin. 64 194201 (in Chinese) [李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星 2015 64 194201]
[2] Chen Z, Xu L, Chen R C, Du G H, Deng B, Xie H L, Xiao T Q 2015 Acta Phys. Sin. 64 164104 (in Chinese) [陈直, 许良, 陈荣昌, 杜国浩, 邓彪, 谢红兰, 肖体乔 2015 64 164104]
[3] Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 124102 (in Chinese) [李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学 2015 64 124102]
[4] Zhong Y, Xu J, Lu Y Q, Wang M J, Wang J 2014 Acta Phys. Sin. 63 237801 (in Chinese) [仲义, 许吉, 陆云清, 王敏娟, 王瑾 2014 63 237801]
[5] Deng K, Ding Y Q, He Z J, Zhao H P, Shi J, Liu Z Y 2009 J. Phys. D: Appl. Phys. 42 185505
[6] Lin S C S, Huang T J, Sun J H, Wu T T 2009 Phys. Rev. B 79 094302
[7] Martin T P, Nicholas M, Orris G J, Cai L W, Torrent D, Sanchez-Dehesa J 2010 Appl. Phys. Lett. 97 113503
[8] Martin T P, Layman C N, Moore K M, Orris G J 2012 Phys. Rev. B 85 161103
[9] Torrent D, Snchez-Dehesa J 2007 New J. Phys. 9 323
[10] Peng S S, He Z J, Jia H, Zhang A Q, Qiu C Y, Ke M Z, Liu Z Y 2010 Appl. Phys. Lett. 96 263502
[11] Zhang S, Yin L, Fang N. 2009 Phys. Rev. Lett. 102 194301
[12] Zhou X, Hu G 2011 Appl. Phys. Lett. 98 263510
[13] Zigoneanu L, Popa B I, Cummer S A 2011 Phys. Rev. B 84 024305
[14] Li Y, Liang B, Tao X, Zhu X F, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 233508
[15] Wang W, Xie Y, Konneker A, Popa B I, Cummer S A 2014 Appl. Phys. Lett. 105 101904
[16] Yuan B G, Cheng Y, Liu X J 2015 Appl. Phys. Express 8 027301
[17] Xia J P, Sun H X 2015 Appl. Phys. Lett. 106 063505
[18] Du G H, Zhu Z M, Gong X F 2001 Fundament of Acoustics (Nanjing: Nanjing University Press) (in Chinese) [杜功焕, 朱哲明, 龚秀芬 2001 声学基础 [南京: 南京大学出版社]
[19] Cai L W, Snchez-Dehesa J 2007 Appl. Phys. Lett. 91 181915
[20] Dehesa J S, Angelov M I, Cervera F, Cai L W 2009 Appl. Phys. Lett. 95 204102
[21] Hrubesh LW 1990 Chem. Industry 24 824
[22] Shen J, Wang J, Wu X 1994 Mater. Sci. Eng. 12 1 (in Chinese) [沈军, 王珏, 吴翔 1994 材料科学与工程 12 1]
-
[1] Li J M, Tang P, Wang J J, Huang T, Lin F, Fang Z Y, Zhu X 2015 Acta Phys. Sin. 64 194201 (in Chinese) [李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星 2015 64 194201]
[2] Chen Z, Xu L, Chen R C, Du G H, Deng B, Xie H L, Xiao T Q 2015 Acta Phys. Sin. 64 164104 (in Chinese) [陈直, 许良, 陈荣昌, 杜国浩, 邓彪, 谢红兰, 肖体乔 2015 64 164104]
[3] Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 124102 (in Chinese) [李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学 2015 64 124102]
[4] Zhong Y, Xu J, Lu Y Q, Wang M J, Wang J 2014 Acta Phys. Sin. 63 237801 (in Chinese) [仲义, 许吉, 陆云清, 王敏娟, 王瑾 2014 63 237801]
[5] Deng K, Ding Y Q, He Z J, Zhao H P, Shi J, Liu Z Y 2009 J. Phys. D: Appl. Phys. 42 185505
[6] Lin S C S, Huang T J, Sun J H, Wu T T 2009 Phys. Rev. B 79 094302
[7] Martin T P, Nicholas M, Orris G J, Cai L W, Torrent D, Sanchez-Dehesa J 2010 Appl. Phys. Lett. 97 113503
[8] Martin T P, Layman C N, Moore K M, Orris G J 2012 Phys. Rev. B 85 161103
[9] Torrent D, Snchez-Dehesa J 2007 New J. Phys. 9 323
[10] Peng S S, He Z J, Jia H, Zhang A Q, Qiu C Y, Ke M Z, Liu Z Y 2010 Appl. Phys. Lett. 96 263502
[11] Zhang S, Yin L, Fang N. 2009 Phys. Rev. Lett. 102 194301
[12] Zhou X, Hu G 2011 Appl. Phys. Lett. 98 263510
[13] Zigoneanu L, Popa B I, Cummer S A 2011 Phys. Rev. B 84 024305
[14] Li Y, Liang B, Tao X, Zhu X F, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 233508
[15] Wang W, Xie Y, Konneker A, Popa B I, Cummer S A 2014 Appl. Phys. Lett. 105 101904
[16] Yuan B G, Cheng Y, Liu X J 2015 Appl. Phys. Express 8 027301
[17] Xia J P, Sun H X 2015 Appl. Phys. Lett. 106 063505
[18] Du G H, Zhu Z M, Gong X F 2001 Fundament of Acoustics (Nanjing: Nanjing University Press) (in Chinese) [杜功焕, 朱哲明, 龚秀芬 2001 声学基础 [南京: 南京大学出版社]
[19] Cai L W, Snchez-Dehesa J 2007 Appl. Phys. Lett. 91 181915
[20] Dehesa J S, Angelov M I, Cervera F, Cai L W 2009 Appl. Phys. Lett. 95 204102
[21] Hrubesh LW 1990 Chem. Industry 24 824
[22] Shen J, Wang J, Wu X 1994 Mater. Sci. Eng. 12 1 (in Chinese) [沈军, 王珏, 吴翔 1994 材料科学与工程 12 1]
Catalog
Metrics
- Abstract views: 7500
- PDF Downloads: 228
- Cited By: 0