搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

径向电场对离子温度梯度模稳定性的影响

陈凝飞 魏广宇 仇志勇

引用本文:
Citation:

径向电场对离子温度梯度模稳定性的影响

陈凝飞, 魏广宇, 仇志勇

Effect of radial electric field on ion-temperature gradient driven mode stability

Chen Ning-Fei, Wei Guang-Yu, Qiu Zhi-Yong
PDF
HTML
导出引用
  • 为了理解托卡马克装置中给定径向电场对离子温度梯度模(ITG)稳定性的影响, 基于非线性回旋动理学理论和气球模表象推导了环位形下包含径向电场引起的极向流和密度扰动影响的ITG的本征模方程, 并分别在长/短波长极限下研究了高能量粒子诱发测地声模(EGAM)所伴随的径向电场对ITG的本征频率、增长率和平行模结构的影响. 不仅对该本征模方程进行了理论研究, 还使用本征矩阵法对其进行数值求解, 以便对理论结果进行验证. 研究发现EGAM伴随的电场引起的极向转动会大幅降低ITG的增长率, 而极向模数m = 1的密度扰动对ITG的线性稳定性影响很小. 这一结果与一般认为的带状流通过极向流剪切抑制湍流的结果是一致的. 除此之外, 使用本文发展的一般性方法也可以研究高能量粒子激发的阿尔芬不稳定性与漂移波湍流通过阿尔芬不稳定性激发带状结构发生的间接非线性相互作用, 即带状结构所伴随的径向电场通过极向转动和密度扰动影响ITG的稳定性. 该间接非线性通道可以作为对主导背景等离子体输运的微观湍流和主导高能量粒子输运的阿尔芬不稳定性之间的直接相互作用通道的补充.
    To understand the effect of given radial electric field on ion-temperature gradient driven mode (ITG) stability in tokamak plasmas, we derive the eigenmode equation for ITG including the poloidal rotation and density modulation associated with radial electric field by using nonlinear gyrokinetic theory. The equation is solved for the eigenfrequency, growth rate and parallel mode structure of ITG both in short- and long-wavelength limit with energetic-particle-induced geodesic acoustic mode (EGAM) as a specific form. The eigenmode equation is not only solved analytically, but also solved numerically to validate the analytic solutions. It is found that, the radial electric field induced poloidal rotation can significantly stabilize ITG, while the density perturbation of the radial electric field may slightly distort the ITG parallel mode structure, but has little effect on ITG stability. The result is consistent with the common picture of turbulence suppression by poloidal shear flow. The general model is also applicable to the investigation of the indirect interaction of ITG and energetic particle driven Alfvén instabilities via zonal structures generation, by introducing poloidal rotation and density modulation associated with zonal structures spontaneously excited by Alfvén instabilities. The indirect channel is supplement to the direct interaction of microturbulences and energetic particle driven Alfvén instabilities.
      通信作者: 仇志勇, zqiu@zju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12275236, 12261131622)资助的课题.
      Corresponding author: Qiu Zhi-Yong, zqiu@zju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275236, 12261131622).
    [1]

    Horton W 1999 Rev. Mod. Phys. 71 735Google Scholar

    [2]

    Lin Z H, Hahm T S, Lee W W, Tang W, White R 1998 Science 281 1835Google Scholar

    [3]

    Hahm T S, Beer M, Lin Z H, Hammett G, Lee W W, Tang W 1999 Phys. Plasmas 6 922Google Scholar

    [4]

    Chen L, Lin Z H, White R 2000 Phys. Plasmas 7 3129Google Scholar

    [5]

    Zonca F, Chen L 2008 Europhys. Lett. 83 35001Google Scholar

    [6]

    Nazikian R, Fu G Y, Austin M, Berk H, Budny R, Gorelenkov N, Heidbrink W, Holcomb C, Kramer G, McKee G, Makowski M, Solomon W, Shafer M, Strait E, Van Zeeland M 2008 Phys. Rev. Lett. 101 185001Google Scholar

    [7]

    Fu G Y 2008 Phys. Rev. Lett. 101 185002Google Scholar

    [8]

    Qiu Z Y, Zonca F, Chen L 2010 Plasma Phys. Control. Fusion 52 095003Google Scholar

    [9]

    Berk H, Zhou T 2010 Nuclear Fusion 50 035007Google Scholar

    [10]

    Qiu Z Y, Chen L, Zonca F, Chen W 2018 Phys. Rev. Lett. 120 135001Google Scholar

    [11]

    Zarzoso D, Sarazin Y, Garbet X, Dumont R, Strugarek A, Abiteboul J, Cartier-Michaud T, Dif-Pradalier G, Ghendrih P, Grandgirard V, Latu G, Passeron C, Thomine O 2013 Phys. Rev. Lett. 110 125002Google Scholar

    [12]

    Dimits A, Bateman G, Beer M, Cohen B, Dorland W, Hammett G, Kim C, Kinsey J, Kotschenreuther M, Kritz A, Lao L L, Mandrekas J, Nevins W, Parker S, Redd A, Shumaker D, Sydora R, Weiland J 2000 Phys. Plasmas 7 969Google Scholar

    [13]

    Qiu Z Y, Chen L, Zonca F 2014 Phys. Plasmas 21 022304Google Scholar

    [14]

    Qiu Z Y, Chen L, Zonca F 2015 Phys. Plasmas 22 042512Google Scholar

    [15]

    Tardini G, Hobirk J, Igochine V, Maggi C, Martin P, McCune D, Peeters A, Sips A, Stäbler A, Stober J, the ASDEX Upgrade Team 2007 Nuclear Fusion 47 280Google Scholar

    [16]

    Mantica P, Strintzi D, Tala T, Giroud C, Johnson T, Leggate H, Lerche E, Loarer T, Peeters A, Salmi A, Sharapov S, Van Eester D, de Vries P, Zabeo L, Zastrow K 2009 Phys. Rev. Lett. 102 175002Google Scholar

    [17]

    Romanelli M, Zocco A, Crisanti F, JET-EFDA Contributors 2010 Plasma Phys. Control. Fusion 52 045007Google Scholar

    [18]

    Garcia J, Challis C, Citrin J, Doerk H, Giruzzi G, Görler T, Jenko F, Maget P. JET Contributors 2015 Nuclear Fusion 55 053007Google Scholar

    [19]

    Citrin J, Jenko F, Mantica P, Told D, Bourdelle C, Garcia J, Haverkort J, Hogeweij G, Johnson T, Pueschel M 2013 Phys. Rev. Lett. 11 1Google Scholar

    [20]

    Chankin A, McCracken G 1993 Nuclear Fusion 33 1459Google Scholar

    [21]

    Cheng C Z, Chen L, Chance M 1985 Ann. Phys. 161 21Google Scholar

    [22]

    Chen L 1994 Phys. Plasmas 1 1519Google Scholar

    [23]

    Qiu Z Y, Chen L, Zonca F 2016 Nuclear Fusion 56 106013Google Scholar

    [24]

    Qiu Z Y, Chen L, Zonca F 2017 Nuclear Fusion 57 056017Google Scholar

    [25]

    Chen L, Qiu Z Y, Zonca F 2022 Nuclear Fusion 62 094001Google Scholar

    [26]

    Chen L, Qiu Z Y, Zonca F 2014 Europhys. Lett. 107 15003Google Scholar

    [27]

    Romanelli F, Zonca F 1993 Phys. Fluids B 5 4081Google Scholar

    [28]

    Chen L, Briguglio S, Romanelli F 1991 Phys. Fluids B 3 611Google Scholar

    [29]

    Chen N F, Hu H Y, Zhang X Y, Wei S Z, Qiu Z Y 2021 Phys. Plasmas 28 042505Google Scholar

  • 图 1  短波长极限下, $ e{{\text{δ}}}\phi_{{\rm E}}/T_{{\rm i}}=0 $(a)和$ 0.1 $(b)时, ITG本征值的实部($ \varOmega_{\rm r} $)和虚部($ \varOmega_{\rm i} $)的分布. 在两种情况下, 最不稳定的都是l = 0的基态

    Fig. 1.  Distribution of the real ($ \varOmega_{\rm r} $) and imaginary ($ \varOmega_{\rm i} $) parts of eigenvalues of ITG when $ e{{\text{δ}}}\phi_ {{\rm E}}/T_{{\rm i}}=0 $ (a) and $ 0.1 $ (b) in the short-wavelength limit. In both cases, the ground state with l = 0 is the most unstable eigenstate.

    图 2  短波长极限下, $ e{{\text{δ}}}\phi_{{\rm E}}/T_{{\rm i}}=0.1 $和0时, ITG最不稳定的基态的平行模结构. 其中, 蓝色实线表示径向电场为零时ITG的模结构, 红色虚线表示有限径向电场时ITG的模结构

    Fig. 2.  Mode structure of the most unstable mode of ITG. The blue solid and red dashed lines represent the cases with $ e{{\text{δ}}}\phi_{{\rm E}}/T_{{\rm i}}=0 $ and $ e{{\text{δ}}}\phi_{{\rm E}}/T_{{\rm i}}=0.1 $, respectively.

    图 3  短波长极限下, ITG的增长率 (a)和实频(b)与EGAM幅度$ e{{\text{δ}}}\phi_{{\rm E}}/T_{{\rm i}} $的关系. 蓝色圆点表示直接数值求解本征值方程(9)得到的数值解, 红色叉号表示求解基态色散关系(14)得到的理论解. 实频和增长率都是用$ C_{\rm s}/L_{T_{\rm i}} $进行归一化, 其中, $ C_{\rm s}^2=2 T_{\rm e}/m_{\rm i} $表示声速; 这两幅图所用的参数为$ \varepsilon_ {T_{\rm i}}= $$ 0.2 $, $ b=1 $

    Fig. 3.  Dependence of the growth rate (a) and real frequency (b) of ITG on the amplitude of EGAM $ e{{\text{δ}}}\phi_{{\rm E}}/T_{{\rm i}} $ in short-wavelength limit. The blue circles represent the numerical value obtained by directly solving the eigenmode equation (9); while the red crosses represent the theoretical value obtained by solving the dispersion relation (14). The real frequency and growth rate of ITG are normalized to $ C_{\rm s}/L_{T_{\rm i}} $, with $ C_{\rm s}^2=2 T_{\rm e}/m_{\rm i} $ representing sound velocity. The parameters used here are $ \varepsilon_ {T_{\rm i}}=0.2 $ and $ b=1 $.

    图 4  短波长极限下, 极向旋转和密度调制共同作用和分别作用时 ITG 增长率对 EGAM 幅度的依赖关系. 图中绿色实线表示只有密度扰动的情形, 红色虚线表示只有电势扰动的情形, 蓝色实线表示两种扰动都存在的情形

    Fig. 4.  Dependence of the growth rate of ITG in presence of poloidal rotation and/or density modulation in short-wavelength limit. The green solid and red dashed lines represent the cases with only density modulation and poloidal rotation, respectively; while the blue line represents the case with both effects.

    图 5  长波长极限下, $ e{{\text{δ}}}\phi_{{\rm E}}/T_{{\rm i}} = 0 $(a)和$ 0.1 $(b)时, ITG的本征值分布. 在两种情况下, 最不稳定的都是l = 0的基态

    Fig. 5.  Distribution of eigenvalues of ITG when $ e{{\text{δ}}}\phi_ {{\rm E}}/T_{{\rm i}} = 0 $ (a) and $ 0.1 $ (b) in the long-wavelength limit. In both cases, the ground state with l = 0 is the most unstable eigenstate.

    图 6  长波长极限下, $ e{{\text{δ}}}\phi_{{\rm E}}/T_{{\rm i}}=0.1 $和0时, ITG最不稳定的基态的平行模结构. 其中, 蓝色实线表示径向电场为零时ITG的模结构, 红色虚线表示有限径向电场时ITG的模结构

    Fig. 6.  Mode structure of the most unstable mode of ITG. The blue solid and red dashed lines represent the cases with $ e{{\text{δ}}}\phi_{{\rm E}}/T_{{\rm i}}=0 $ and $ e{{\text{δ}}}\phi_{{\rm E}}/T_{{\rm i}}=0.1 $, respectively.

    图 7  长波长极限下, ITG的增长率 (a)和实频(b)与EGAM幅度$ e{{\text{δ}}}\phi_{{\rm E}}/T_{{\rm i}} $的关系. 蓝色圆点表示直接数值求解本征值方程(9) 得到的数值解, 红色叉号表示求解基态色散关系(19)得到的理论解. 这两幅图所用的参数为$ \varepsilon_ {T_{\rm i}}=0.2 $, b = 0.01

    Fig. 7.  Dependence of the growth rate (a) and real frequency (b) of ITG on the amplitude of EGAM $ e{{\text{δ}}}\phi_{{\rm E}}/T_{{\rm i}} $ in long-wavelength limit. The blue circles represent the numerical value obtained by directly solving the eigenmode equation (9); while the red crosses represent the theoretical value obtained by solving the dispersion relation (19). The parameters used here are $ \varepsilon_ {T_{\rm i}}=0.2 $ and b = 0.01.

    图 8  长波长极限下, 极向旋转和密度调制共同作用和分别作用时 ITG 增长率对 EGAM 幅度的依赖关系. 图中绿色实线表示只有密度扰动的情形, 红色虚线表示只有电势扰动的情形, 蓝色实线表示两种扰动都存在的情形

    Fig. 8.  Dependence of the growth rate of ITG in presence of poloidal rotation and/or density modulation in long-wavelength limit. The green solid and red dashed lines represent the cases with only density modulation and poloidal rotation, respectively; while the blue line represents the case with both effects.

    Baidu
  • [1]

    Horton W 1999 Rev. Mod. Phys. 71 735Google Scholar

    [2]

    Lin Z H, Hahm T S, Lee W W, Tang W, White R 1998 Science 281 1835Google Scholar

    [3]

    Hahm T S, Beer M, Lin Z H, Hammett G, Lee W W, Tang W 1999 Phys. Plasmas 6 922Google Scholar

    [4]

    Chen L, Lin Z H, White R 2000 Phys. Plasmas 7 3129Google Scholar

    [5]

    Zonca F, Chen L 2008 Europhys. Lett. 83 35001Google Scholar

    [6]

    Nazikian R, Fu G Y, Austin M, Berk H, Budny R, Gorelenkov N, Heidbrink W, Holcomb C, Kramer G, McKee G, Makowski M, Solomon W, Shafer M, Strait E, Van Zeeland M 2008 Phys. Rev. Lett. 101 185001Google Scholar

    [7]

    Fu G Y 2008 Phys. Rev. Lett. 101 185002Google Scholar

    [8]

    Qiu Z Y, Zonca F, Chen L 2010 Plasma Phys. Control. Fusion 52 095003Google Scholar

    [9]

    Berk H, Zhou T 2010 Nuclear Fusion 50 035007Google Scholar

    [10]

    Qiu Z Y, Chen L, Zonca F, Chen W 2018 Phys. Rev. Lett. 120 135001Google Scholar

    [11]

    Zarzoso D, Sarazin Y, Garbet X, Dumont R, Strugarek A, Abiteboul J, Cartier-Michaud T, Dif-Pradalier G, Ghendrih P, Grandgirard V, Latu G, Passeron C, Thomine O 2013 Phys. Rev. Lett. 110 125002Google Scholar

    [12]

    Dimits A, Bateman G, Beer M, Cohen B, Dorland W, Hammett G, Kim C, Kinsey J, Kotschenreuther M, Kritz A, Lao L L, Mandrekas J, Nevins W, Parker S, Redd A, Shumaker D, Sydora R, Weiland J 2000 Phys. Plasmas 7 969Google Scholar

    [13]

    Qiu Z Y, Chen L, Zonca F 2014 Phys. Plasmas 21 022304Google Scholar

    [14]

    Qiu Z Y, Chen L, Zonca F 2015 Phys. Plasmas 22 042512Google Scholar

    [15]

    Tardini G, Hobirk J, Igochine V, Maggi C, Martin P, McCune D, Peeters A, Sips A, Stäbler A, Stober J, the ASDEX Upgrade Team 2007 Nuclear Fusion 47 280Google Scholar

    [16]

    Mantica P, Strintzi D, Tala T, Giroud C, Johnson T, Leggate H, Lerche E, Loarer T, Peeters A, Salmi A, Sharapov S, Van Eester D, de Vries P, Zabeo L, Zastrow K 2009 Phys. Rev. Lett. 102 175002Google Scholar

    [17]

    Romanelli M, Zocco A, Crisanti F, JET-EFDA Contributors 2010 Plasma Phys. Control. Fusion 52 045007Google Scholar

    [18]

    Garcia J, Challis C, Citrin J, Doerk H, Giruzzi G, Görler T, Jenko F, Maget P. JET Contributors 2015 Nuclear Fusion 55 053007Google Scholar

    [19]

    Citrin J, Jenko F, Mantica P, Told D, Bourdelle C, Garcia J, Haverkort J, Hogeweij G, Johnson T, Pueschel M 2013 Phys. Rev. Lett. 11 1Google Scholar

    [20]

    Chankin A, McCracken G 1993 Nuclear Fusion 33 1459Google Scholar

    [21]

    Cheng C Z, Chen L, Chance M 1985 Ann. Phys. 161 21Google Scholar

    [22]

    Chen L 1994 Phys. Plasmas 1 1519Google Scholar

    [23]

    Qiu Z Y, Chen L, Zonca F 2016 Nuclear Fusion 56 106013Google Scholar

    [24]

    Qiu Z Y, Chen L, Zonca F 2017 Nuclear Fusion 57 056017Google Scholar

    [25]

    Chen L, Qiu Z Y, Zonca F 2022 Nuclear Fusion 62 094001Google Scholar

    [26]

    Chen L, Qiu Z Y, Zonca F 2014 Europhys. Lett. 107 15003Google Scholar

    [27]

    Romanelli F, Zonca F 1993 Phys. Fluids B 5 4081Google Scholar

    [28]

    Chen L, Briguglio S, Romanelli F 1991 Phys. Fluids B 3 611Google Scholar

    [29]

    Chen N F, Hu H Y, Zhang X Y, Wei S Z, Qiu Z Y 2021 Phys. Plasmas 28 042505Google Scholar

  • [1] 任珍珍, 申伟. 负三角形变托卡马克位形下高能量离子激发鱼骨模的模拟研究.  , 2023, 72(21): 215202. doi: 10.7498/aps.72.20230650
    [2] 磁约束等离子体中的高能量粒子专题编者按.  , 2023, 72(21): 210101. doi: 10.7498/aps.72.210101
    [3] 侯玉梅, 陈伟, 邹云鹏, 于利明, 石中兵, 段旭如. HL-2A装置高能量离子驱动的比压阿尔芬本征模的扫频行为.  , 2023, 72(21): 215211. doi: 10.7498/aps.72.20230726
    [4] 包健, 张文禄, 李定. 高能量电子激发比压阿尔芬本征模的全域模拟研究.  , 2023, 72(21): 215216. doi: 10.7498/aps.72.20230794
    [5] 邹云鹏, 陈锡熊, 陈伟. 临界梯度模型的优化及集成模拟中高能量粒子模块的搭建.  , 2023, 72(21): 215206. doi: 10.7498/aps.72.20230681
    [6] 魏广宇, 陈凝飞, 仇志勇. 高能量粒子测地声模与Dimits区漂移波相互作用.  , 2022, 71(1): 015201. doi: 10.7498/aps.71.20211430
    [7] 黄捷, 李沫杉, 覃程, 王先驱. 中国首台准环对称仿星器中离子温度梯度模的模拟研究.  , 2022, 71(18): 185202. doi: 10.7498/aps.71.20220729
    [8] 魏广宇, 陈凝飞, 仇志勇. 高能量粒子测地声模与Dimits区漂移波相互作用.  , 2021, (): . doi: 10.7498/aps.70.20211430
    [9] 石黎铭, 吴雪科, 万迪, 李会东, 樊群超, 王中天, 冯灏, 王占辉, 马杰. 先进磁镜装置中径向电场对高能粒子的约束性能研究.  , 2019, 68(10): 105201. doi: 10.7498/aps.68.20181983
    [10] 沈勇, 董家齐, 徐红兵. 托卡马克离子温度梯度湍流输运同位素定标修正中杂质的影响.  , 2018, 67(19): 195203. doi: 10.7498/aps.67.20180703
    [11] 刘宸, 孙宏祥, 袁寿其, 夏建平. 基于温度梯度分布的宽频带声聚焦效应.  , 2016, 65(4): 044303. doi: 10.7498/aps.65.044303
    [12] 谢辰, 胡明列, 张大鹏, 柴路, 王清月. 基于多通单元的高能量耗散孤子锁模光纤振荡器.  , 2013, 62(5): 054203. doi: 10.7498/aps.62.054203
    [13] 杨谋, 孟英峰, 李皋, 邓建民, 张林, 唐思洪. 钻井液径向温度梯度与轴向导热对井筒温度分布影响.  , 2013, 62(7): 079101. doi: 10.7498/aps.62.079101
    [14] 陆赫林, 陈忠勇, 李跃勋, 杨恺. 磁场剪切对离子温度梯度模带状流产生的影响.  , 2011, 60(8): 085202. doi: 10.7498/aps.60.085202
    [15] 张俊, 谭平恒, 赵伟杰. 利用径向呼吸模及其倍频模的共振特性精确测定单壁碳纳米管的电子跃迁能量.  , 2010, 59(11): 7966-7973. doi: 10.7498/aps.59.7966
    [16] 陆赫林, 王顺金. 离子温度梯度模湍流的带状流最小自由度模型.  , 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [17] 宋有建, 胡明列, 刘博文, 柴 路, 王清月. 高能量掺Yb偏振型大模场面积光子晶体光纤孤子锁模飞秒激光器.  , 2008, 57(10): 6425-6429. doi: 10.7498/aps.57.6425
    [18] 简广德, 董家齐. 环形等离子体中电子温度梯度不稳定性的粒子模拟.  , 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
    [19] 臧维平, 田建国, 张光寅. 非线性镜锁模理论.  , 1994, 43(5): 742-747. doi: 10.7498/aps.43.742
    [20] 郭世宠, 沈解伍, 陈骝, 蔡诗东. 离子温度梯度不稳定性的解析理论.  , 1982, 31(1): 17-29. doi: 10.7498/aps.31.17
计量
  • 文章访问数:  2427
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-17
  • 修回日期:  2023-09-26
  • 上网日期:  2023-10-12
  • 刊出日期:  2023-11-05

/

返回文章
返回
Baidu
map