-
利用光电子能谱、原子力显微镜以及低能电子衍射等 表面研究手段系统研究了真空沉积生长的酞菁铜薄膜与衬底MoS2(0001)之间的范德瓦耳斯异质结界面电子结构和几何结构. 角分辨光电子能谱清楚地再现了MoS2(0001)衬底在Γ点附近的能带结构. 低能电子衍射结果表明,CuPc薄膜在MoS2(0001)表面沿着衬底表面[1120],[1210]和[2110]三个晶向有序生长,反映了衬底对CuPc的影响. 原子力显微镜结果表明,CuPc在MoS2 衬底上遵循层状-岛状生长模式:在低生长厚度下(单层薄膜厚度约为0.3 nm),CuPc分子平面平行于MoS2表面上形成均匀连续的薄膜; 在较高的沉积厚度下,CuPc沿衬底晶向形成棒状晶粒,表现出明显的各向异性. 光电子能谱显示界面偶极层为0.07 eV,而且能谱在膜厚1.2 nm饱和,揭示了酞菁铜与MoS2(0001)范德瓦耳斯异质结的能级结构.Molecular packing and interfacial electronic properties of well-ordered organic semiconductor, copper phthalocyanine, thin films grown on MoS2(0001) are studied with low energy electron diffraction (LEED) optics, atomic force microscope (AFM) and photoelectron spectroscopy (PES). The band structure of MoS2(0001) around the Γ point of the surface Brillouin zone is given by angle-resolved photoelectron spectroscopy. The LEED patterns indicate that three equivalent well-ordered two-dimensional square lattices are formed in CuPc monolayer thin film along three surface crystalline axes ([1120], [1210] and [2110]) of MoS2 (0001) substrate, respectively. The AFM measurements show that the growth of CuPc on MoS2 (0001) occurs in a Stranski-Krastanov mode. The CuPc molecule can be flat-laying on MoS2(0001) at low coverage (~0.3 nm), but form strip-like crystals along the surface crystal axes of MoS2 (0001) at high coverage (>2.4 nm). The CuPc molecule shows obvious anisotropy, indicating that the molecular plane is not parallel to the MoS2 surface. The PES measurements show there is no charge transfer process at the interface, indicating weak van der Waals interaction between CuPc and MoS2(0001).
-
Keywords:
- organic semiconductor /
- photoemission spectroscopy /
- electronic structure /
- heterostructure
[1] Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766
[2] Fuhrer M S, Hone J 2013 Nature Nanotechnol. 8 146
[3] Dong H M 2013 Acta Phys. Sin. 62 206101 (in Chinese) [董海明 2013 62 206101]
[4] Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 61 227102]
[5] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotechnol. 6 147
[6] Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674
[7] Kang J, Li J B, Li S S, Xia J B, Wang L W 2013 Nano Lett. 13 5485
[8] Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Neto A H C, Novoselov K S 2013 Science 340 1311
[9] Chen W B, Yang W F, Zou H J, Tang J X, Deng L F, Li P T 2011 Acta Phys. Sin. 60 117107 (in Chinese) [陈卫兵, 杨伟丰, 邹豪杰, 汤建新, 邓林峰, 黎沛涛 2011 60 117107]
[10] Wang N N, Sheng Y J, Zang Y, Jiang Y D 2010 Chin. Phys. B 19 038602
[11] Nardi M V, Detto F, Aversa L, Verucchi R, Salviati G, Iannotta S, Casarin M 2013 Phys. Chem. Chem. Phys. 15 12864
[12] Zhao J Q, Ding M, Zhang T Y, Zhang N Y, Pang Y T, Ji Y J, Chen Y, Wang F X, Fu G 2012 Chin. Phys. B 21 057110
[13] Wu Q H, Hong G, Ng T W, Lee S T 2012 Appl. Phys. Lett. 100 161603
[14] Wang C G, Irfan I, Turinske A J, Gao Y L 2012 Thin Solid Films 525 64
[15] Koma A, Sunouchi K 1985 J. Vac. Sci. Technol. B 3 724
[16] Ludwig C, Strohmaier R, Petersen J, Gompf B, Eisenmenger W 1994 J. Vac. Sci. Technol. B 12 1963
[17] Okudaira K K, Hasegawa S, Ishii H, Seki K, Harada Y, Ueno N 1999 J. Appl. Phys. 85 6453
[18] Fukuma T, Kobayashi K, Yamada H, Matsushige K 2004 J. Appl. Phys. 95 4742
[19] Boker T H, Severin R, Muller A, Janowitz C, Manzke R 2001 Phys. Rev. B 64 235305
[20] Mahatha S K, Patel K D, Menon K S R 2012 J. Phys.: Condens. Matter 24 475504
[21] Huang H, Sun J T, Feng Y P, Chen W, Wee A T S 2011 Phys. Chem. Chem. Phys 13 20933
[22] Xiao K, Deng W, Keum J K, Yoon M, Vlassiouk I V, Clark K W, Li A P, Kravchenko I I, Gu G, Payzant E A, Sumpter B G, Smith S C, Browning J F Geohegan D B 2013 J. Am. Chem. Soc. 135 3680
[23] McMenamin J C, Spicer W E 1977 Phys. Rev. B 16 5474
[24] Yamane H, Yabuuchi Y, Fukagawa H, Kera S, Okudaira K K, Ueno N 2006 J. Appl. Phys. 99 093705
[25] Chen W, Chen S, Huang H, Qi D C, Gao X Y, Wee A T S 2008 Appl. Phys. Lett. 92 063308
[26] Gao Y L Yan L 2003 Chem. Phys. Lett. 380 451
[27] Ding H J, Gao Y L, Cinchetti M, Wstenberg J P, Sánchez-Albaneda M, Andreyev O, Bauer M, Aeschlimann M 2008 Phys. Rev. B 78 075311
-
[1] Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766
[2] Fuhrer M S, Hone J 2013 Nature Nanotechnol. 8 146
[3] Dong H M 2013 Acta Phys. Sin. 62 206101 (in Chinese) [董海明 2013 62 206101]
[4] Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 61 227102]
[5] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotechnol. 6 147
[6] Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674
[7] Kang J, Li J B, Li S S, Xia J B, Wang L W 2013 Nano Lett. 13 5485
[8] Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Neto A H C, Novoselov K S 2013 Science 340 1311
[9] Chen W B, Yang W F, Zou H J, Tang J X, Deng L F, Li P T 2011 Acta Phys. Sin. 60 117107 (in Chinese) [陈卫兵, 杨伟丰, 邹豪杰, 汤建新, 邓林峰, 黎沛涛 2011 60 117107]
[10] Wang N N, Sheng Y J, Zang Y, Jiang Y D 2010 Chin. Phys. B 19 038602
[11] Nardi M V, Detto F, Aversa L, Verucchi R, Salviati G, Iannotta S, Casarin M 2013 Phys. Chem. Chem. Phys. 15 12864
[12] Zhao J Q, Ding M, Zhang T Y, Zhang N Y, Pang Y T, Ji Y J, Chen Y, Wang F X, Fu G 2012 Chin. Phys. B 21 057110
[13] Wu Q H, Hong G, Ng T W, Lee S T 2012 Appl. Phys. Lett. 100 161603
[14] Wang C G, Irfan I, Turinske A J, Gao Y L 2012 Thin Solid Films 525 64
[15] Koma A, Sunouchi K 1985 J. Vac. Sci. Technol. B 3 724
[16] Ludwig C, Strohmaier R, Petersen J, Gompf B, Eisenmenger W 1994 J. Vac. Sci. Technol. B 12 1963
[17] Okudaira K K, Hasegawa S, Ishii H, Seki K, Harada Y, Ueno N 1999 J. Appl. Phys. 85 6453
[18] Fukuma T, Kobayashi K, Yamada H, Matsushige K 2004 J. Appl. Phys. 95 4742
[19] Boker T H, Severin R, Muller A, Janowitz C, Manzke R 2001 Phys. Rev. B 64 235305
[20] Mahatha S K, Patel K D, Menon K S R 2012 J. Phys.: Condens. Matter 24 475504
[21] Huang H, Sun J T, Feng Y P, Chen W, Wee A T S 2011 Phys. Chem. Chem. Phys 13 20933
[22] Xiao K, Deng W, Keum J K, Yoon M, Vlassiouk I V, Clark K W, Li A P, Kravchenko I I, Gu G, Payzant E A, Sumpter B G, Smith S C, Browning J F Geohegan D B 2013 J. Am. Chem. Soc. 135 3680
[23] McMenamin J C, Spicer W E 1977 Phys. Rev. B 16 5474
[24] Yamane H, Yabuuchi Y, Fukagawa H, Kera S, Okudaira K K, Ueno N 2006 J. Appl. Phys. 99 093705
[25] Chen W, Chen S, Huang H, Qi D C, Gao X Y, Wee A T S 2008 Appl. Phys. Lett. 92 063308
[26] Gao Y L Yan L 2003 Chem. Phys. Lett. 380 451
[27] Ding H J, Gao Y L, Cinchetti M, Wstenberg J P, Sánchez-Albaneda M, Andreyev O, Bauer M, Aeschlimann M 2008 Phys. Rev. B 78 075311
计量
- 文章访问数: 7104
- PDF下载量: 722
- 被引次数: 0