搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理计算Co/h-BN界面上的微弱Dzyaloshinsky-Moriya相互作用

黄灿 李小影 朱岩 潘燕飞 樊济宇 施大宁 马春兰

引用本文:
Citation:

第一性原理计算Co/h-BN界面上的微弱Dzyaloshinsky-Moriya相互作用

黄灿, 李小影, 朱岩, 潘燕飞, 樊济宇, 施大宁, 马春兰

First principle study of weak Dzyaloshinsky-Moriya interaction in Co/BN surface

Huang Can, Li Xiao-Ying, Zhu Yan, Pan Yan-Fei, Fan Ji-Yu, Shi Da-Ning, Ma Chun-Lan
PDF
导出引用
  • 用密度泛函理论的第一性原理计算程序VASP在广义布洛赫条件下计算了Co/h-BN反方向的自旋螺旋能量与波矢的色散关系E(q)与E(-q).E(q)与E(-q)能量之差反映了Co/h-BN界面上下层之间空间反演对称性破缺引起的Dzyaloshinsky-Moriya相互作用(DMI)的大小.通过海森伯作用(HBI)模型与DMI模型拟合计算值,得到Co原子间各近邻的HBI参数J1J4及DMI参数d1,d2.在Co/h-BN中,J1为负值起完全主导作用,J3比J1小一个量级,其他参数接近于0.因此,Co/h-BN的基态是三角反铁磁,而DMI很微弱.根据这种性质,h-BN可以作为其他DMI界面的覆盖层.
    Based on density functional theory calculations, we elucidate the atomic and electronic structures of Co atom of hexgonal BN (Co/h-BN). The interaction between magnetic moments of Co atoms is realized through Co-N_-B_ grid, which is indicated by the analysis of spin charge contour plot and partial density of states of each atom, where and denote the site of B or N atom close to and away from Co atom, respectively. Then the dispersion relations E(q) and E(-q) (q denotes the direction vector of spin spiral) between energy and wave vector of spin spiral in the opposite directions are calculated with generalized Bloch equations. In the incommensurate spin spiral calculations, all the magnetic moments of Co atom are arranged in the same plane that is perpendicular to the Co/h-BN film. The difference between E(q) and E(-q) is caused by the interface of Co/h-BN, where the symmetry of space perpendicular to the film is broken. Moreover, the effective Heisenberg exchange interaction (HBI) and Dzyaloshinsky-Moriya interaction (DMI) parameters between different neighbors (Ji and di) are derived by well fitting the ab initio magnon dispersion E(q) to HBI with DMI model and E(q)-E(-q) to DMI model, respectively. The J1 has a negative value and plays a major role, J3 is one order of magnitude smaller than J1, and other parameters are close to zero. Hence, Co/h-BN is triangular antiferromagnetic material with the q at k point in the first Brillouin zone. However, the spin spiral with the q at M point is only 2 meV larger than the basic state with the only negative J1 and smaller positive J2. The DMI is not shown in this interface with d1 and d2 close to zero. Based on the non DMI character and its stability in air, h-BN can be capped on other DMI interfaces. The reason that the DMI in Co/h-BN is much smaller than in Co/Gra is much larger height between Co and h-BN. It is 0.192 nm for h-BN but it is 0.156 nm for Co/Gra. We may reduce the height to enhance the DMI by other ways, such as adding electrical and magnetic fields in the future.
      通信作者: 朱岩, yzhu@nuaa.edu.cn;yfpan@nuaa.edu.cn ; 潘燕飞, yzhu@nuaa.edu.cn;yfpan@nuaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11204131,11374159)、江苏省高等学校自然科学研究重大项目(批准号:17KJA140001)和江苏省六大人才高峰高层次人才项目(批准号:XCL-078)资助的课题.
      Corresponding author: Zhu Yan, yzhu@nuaa.edu.cn;yfpan@nuaa.edu.cn ; Pan Yan-Fei, yzhu@nuaa.edu.cn;yfpan@nuaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204131, 11374159), the Natural Science Foundation of Jiangsu Higher Education Institutions, China (Grant No. 17KJA140001), and the Six Talent Peaks Project of Jiangsu, China (Grant No. XCL-078).
    [1]

    Skyrme T H R 1962 Nucl. Phys. 31 556

    [2]

    Belavin A A, Polyakov A M 1975 JETP Lett. 22 245

    [3]

    Rler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797

    [4]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Science 323 915

    [5]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 456 901

    [6]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241

    [7]

    Moriya T 1960 Phys. Rev. 120 91

    [8]

    Shu L, Chen Y G, Chen H 2002 Acta Phys. Sin. 51 902(in Chinese) [殳蕾, 陈宇光, 陈鸿 2002 51 902]

    [9]

    Cai Z, Lu W B, Liu Y J 2008 Acta Phys. Sin. 57 7267(in Chinese) [蔡卓, 陆文彬, 刘拥军 2008 57 7267]

    [10]

    Zhang Y L, Zhou B 2011 Acta Phys. Sin. 60 120301(in Chinese) [张英丽, 周斌 2011 60 120301]

    [11]

    Bode M, Heide M, von Bergmann K, Ferriani P, Heinze S, Bihlmayer G, Kubetzka A, Pietzsch O, Blgel S, Wiesendanger R 2007 Nature 447 190

    [12]

    Romming N, Hanneken C, Menzel M, Bickel J, Wolter B, Bergmann K, Kubetzka A, Wiesendanger R 2013 Science 341 636

    [13]

    Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [14]

    Han W, Kawakami R K, Gmitra M, Fabian J 2014 Nat. Nanotech. 9 794

    [15]

    Roche S, Xu L, Dai Z H, Wang S, Liu B, Sun Y M, Wang W T 2014 Acta Phys. Sin. 63 107102(in Chinese) [徐雷, 戴振宏, 王森, 刘兵, 孙玉明, 王伟田 2014 63 107102]

    [16]

    Xu L, Dai Z H, Wang S, Liu B, Sun Y M, Wang W T 2014 Acta Phys. Sin. 63 107102 (in Chinese) [徐雷, 戴振宏, 王森, 刘兵, 孙玉明, 王伟田 2014 63 107102]

    [17]

    Xu L, Dai Z H, Sui P F, Wang W T, Sun Y M 2014 Acta Phys. Sin. 63 186101(in Chinese) [徐雷, 戴振宏, 隋鹏飞, 王伟田, 孙玉明 2014 63 186101]

    [18]

    Yang H X, Chen G, Cotta A A C, N'Diaye A T, Nikolaev S A, Soares E A, Macedo W A A, Schmid A K, Fert A, Chshiev M 2017 ArXiv 1704 09023

    [19]

    Pacil D, Meyer J C, Girit , Zettl A 2008 Appl. Phys. Lett. 92 133107

    [20]

    Xu M S, Liang T, Shi M M, Chen H Z 2013 Chem. Rev. 113 3766

    [21]

    Guo S J, Dong S J 2011 Chem. Soc. Rev. 40 2644

    [22]

    Chen Q L, Dai Z H, Liu Z Q, An Y F, Liu Y L 2016 Acta Phys. Sin. 65 136101(in Chinese) [陈庆玲, 戴振宏, 刘兆庆, 安玉凤, 刘悦林 2016 65 136101]

    [23]

    Auwrter W, Muntwiler M, Greber T, Osterwalder J 2002 Surf. Sci. 511 379

    [24]

    Zhou Y G, Xiao-Dong J, Wang G, Xiao Y, Gao F, Zu X T 2010 Phys. Chem. Phys. 12 7588

    [25]

    Ma D W, Lu Z S, Ju W W, Tang Y N 2012 J. Phys. Condens. Matter 24 145501

    [26]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Yang H X, Boulle O, Cros V, Fert A, Chshiev M 2016 ArXiv 1603 01847

    [29]

    Zhu Y, Ma C L, Shi D N, Zhang K C 2014 Phys. Lett. A 378 2234

    [30]

    Yang H, Thiaville A, Rohart S, Fert A, Chshiev M 2015 Phys. Rev. Lett. 115 267210

    [31]

    Pan Y, Zhu Y, Shi D N, Wei X Y, Ma C L, Zhang K C 2015 J. Alloys Compd. 644 341

    [32]

    Marsman M, Hafner J 2002 Phys. Rev. B 66 224409

    [33]

    Hobbs D, Kresse G, Hafner J 2000 Phys. Rev. B 62 11556

    [34]

    Mryasov O N, Lichtenstein A I, Sandratskii L M, Gubanov V A 1991 J. Phys. Condens. Matter 3 8565

    [35]

    Knpfle K, Sandratskii L M, Kbler J 2000 Phys. Rev. B 62 5564

    [36]

    Paszkowicz W, Pelka J B, Knapp M, Szyszko T, Podsiadlo S 2002 Appl. Phys. A 75 431

    [37]

    Liu X F, Han J R, Jiang X F 2010 Acta Phys. Sin. 59 6487(in Chinese) [刘先锋, 韩玖荣, 江学范 2010 59 6487]

    [38]

    Seki S, Onose Y, Tokura Y 2008 Phys. Rev. Lett. 101 067204

    [39]

    Albaalbaky A, Kvashnin Y, Ledue D, Patte R, Frsard R 2017 Phys. Rev. B 96 064431

  • [1]

    Skyrme T H R 1962 Nucl. Phys. 31 556

    [2]

    Belavin A A, Polyakov A M 1975 JETP Lett. 22 245

    [3]

    Rler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797

    [4]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Science 323 915

    [5]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 456 901

    [6]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241

    [7]

    Moriya T 1960 Phys. Rev. 120 91

    [8]

    Shu L, Chen Y G, Chen H 2002 Acta Phys. Sin. 51 902(in Chinese) [殳蕾, 陈宇光, 陈鸿 2002 51 902]

    [9]

    Cai Z, Lu W B, Liu Y J 2008 Acta Phys. Sin. 57 7267(in Chinese) [蔡卓, 陆文彬, 刘拥军 2008 57 7267]

    [10]

    Zhang Y L, Zhou B 2011 Acta Phys. Sin. 60 120301(in Chinese) [张英丽, 周斌 2011 60 120301]

    [11]

    Bode M, Heide M, von Bergmann K, Ferriani P, Heinze S, Bihlmayer G, Kubetzka A, Pietzsch O, Blgel S, Wiesendanger R 2007 Nature 447 190

    [12]

    Romming N, Hanneken C, Menzel M, Bickel J, Wolter B, Bergmann K, Kubetzka A, Wiesendanger R 2013 Science 341 636

    [13]

    Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [14]

    Han W, Kawakami R K, Gmitra M, Fabian J 2014 Nat. Nanotech. 9 794

    [15]

    Roche S, Xu L, Dai Z H, Wang S, Liu B, Sun Y M, Wang W T 2014 Acta Phys. Sin. 63 107102(in Chinese) [徐雷, 戴振宏, 王森, 刘兵, 孙玉明, 王伟田 2014 63 107102]

    [16]

    Xu L, Dai Z H, Wang S, Liu B, Sun Y M, Wang W T 2014 Acta Phys. Sin. 63 107102 (in Chinese) [徐雷, 戴振宏, 王森, 刘兵, 孙玉明, 王伟田 2014 63 107102]

    [17]

    Xu L, Dai Z H, Sui P F, Wang W T, Sun Y M 2014 Acta Phys. Sin. 63 186101(in Chinese) [徐雷, 戴振宏, 隋鹏飞, 王伟田, 孙玉明 2014 63 186101]

    [18]

    Yang H X, Chen G, Cotta A A C, N'Diaye A T, Nikolaev S A, Soares E A, Macedo W A A, Schmid A K, Fert A, Chshiev M 2017 ArXiv 1704 09023

    [19]

    Pacil D, Meyer J C, Girit , Zettl A 2008 Appl. Phys. Lett. 92 133107

    [20]

    Xu M S, Liang T, Shi M M, Chen H Z 2013 Chem. Rev. 113 3766

    [21]

    Guo S J, Dong S J 2011 Chem. Soc. Rev. 40 2644

    [22]

    Chen Q L, Dai Z H, Liu Z Q, An Y F, Liu Y L 2016 Acta Phys. Sin. 65 136101(in Chinese) [陈庆玲, 戴振宏, 刘兆庆, 安玉凤, 刘悦林 2016 65 136101]

    [23]

    Auwrter W, Muntwiler M, Greber T, Osterwalder J 2002 Surf. Sci. 511 379

    [24]

    Zhou Y G, Xiao-Dong J, Wang G, Xiao Y, Gao F, Zu X T 2010 Phys. Chem. Phys. 12 7588

    [25]

    Ma D W, Lu Z S, Ju W W, Tang Y N 2012 J. Phys. Condens. Matter 24 145501

    [26]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Yang H X, Boulle O, Cros V, Fert A, Chshiev M 2016 ArXiv 1603 01847

    [29]

    Zhu Y, Ma C L, Shi D N, Zhang K C 2014 Phys. Lett. A 378 2234

    [30]

    Yang H, Thiaville A, Rohart S, Fert A, Chshiev M 2015 Phys. Rev. Lett. 115 267210

    [31]

    Pan Y, Zhu Y, Shi D N, Wei X Y, Ma C L, Zhang K C 2015 J. Alloys Compd. 644 341

    [32]

    Marsman M, Hafner J 2002 Phys. Rev. B 66 224409

    [33]

    Hobbs D, Kresse G, Hafner J 2000 Phys. Rev. B 62 11556

    [34]

    Mryasov O N, Lichtenstein A I, Sandratskii L M, Gubanov V A 1991 J. Phys. Condens. Matter 3 8565

    [35]

    Knpfle K, Sandratskii L M, Kbler J 2000 Phys. Rev. B 62 5564

    [36]

    Paszkowicz W, Pelka J B, Knapp M, Szyszko T, Podsiadlo S 2002 Appl. Phys. A 75 431

    [37]

    Liu X F, Han J R, Jiang X F 2010 Acta Phys. Sin. 59 6487(in Chinese) [刘先锋, 韩玖荣, 江学范 2010 59 6487]

    [38]

    Seki S, Onose Y, Tokura Y 2008 Phys. Rev. Lett. 101 067204

    [39]

    Albaalbaky A, Kvashnin Y, Ledue D, Patte R, Frsard R 2017 Phys. Rev. B 96 064431

  • [1] 吴宇阳, 李卫, 任青颖, 李金泽, 许巍, 许杰. 金属Sc修饰Ti2CO2吸附气体分子的第一性原理研究.  , 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [2] 朱凯, 黄灿, 曹邦杰, 潘燕飞, 樊济宇, 马春兰, 朱岩. 单层1T-CoI2中Kitaev作用的第一性原理研究.  , 2023, 72(24): 247101. doi: 10.7498/aps.72.20230909
    [3] 付正鸿, 李婷, 单美乐, 郭糠, 苟国庆. H对Mg2Si力学性能影响的第一性原理研究.  , 2019, 68(17): 177102. doi: 10.7498/aps.68.20190368
    [4] 张蕾. 斯格明子相关的螺旋磁有序体系的临界行为.  , 2018, 67(13): 137501. doi: 10.7498/aps.67.20180137
    [5] 梁雪, 赵莉, 邱雷, 李双, 丁丽红, 丰友华, 张溪超, 周艳, 赵国平. 磁性斯格明子的赛道存储.  , 2018, 67(13): 137510. doi: 10.7498/aps.67.20180764
    [6] 董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国. 磁性斯格明子的多场调控研究.  , 2018, 67(13): 137507. doi: 10.7498/aps.67.20180931
    [7] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳. 磁斯格明子器件及其应用进展.  , 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [8] 赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光. 斯格明子电子学的研究进展.  , 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [9] 杨阳, 王安民, 曹连振, 赵加强, 逯怀新. 与XY双自旋链耦合的双量子比特系统的关联性与相干性.  , 2018, 67(15): 150302. doi: 10.7498/aps.67.20180812
    [10] 轩胜杰, 柳艳. 周期性应变调控斯格明子在纳米条带中的运动.  , 2018, 67(13): 137503. doi: 10.7498/aps.67.20180031
    [11] 李小影, 黄灿, 朱岩, 李晋斌, 樊济宇, 潘燕飞, 施大宁, 马春兰. -(Zn,Cr)S(111)表面上的Dzyaloshinsky-Moriya作用:第一性原理计算.  , 2018, 67(13): 137101. doi: 10.7498/aps.67.20180342
    [12] 陈庆玲, 戴振宏, 刘兆庆, 安玉凤, 刘悦林. 双层h-BN/Graphene结构稳定性及其掺杂特性的第一性原理研究.  , 2016, 65(13): 136101. doi: 10.7498/aps.65.136101
    [13] 石瑜, 白洋, 莫丽玢, 向青云, 黄亚丽, 曹江利. H掺杂α-Fe2O3的第一性原理研究.  , 2015, 64(11): 116301. doi: 10.7498/aps.64.116301
    [14] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究.  , 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [15] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算.  , 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [16] 范开敏, 杨莉, 孙庆强, 代云雅, 彭述明, 龙兴贵, 周晓松, 祖小涛. 六角相ErAx (A=H, He)体系弹性性质的第一性原理研究.  , 2013, 62(11): 116201. doi: 10.7498/aps.62.116201
    [17] 罗强, 唐斌, 张智, 冉曾令. H2S在Fe(100)面吸附的第一性原理研究.  , 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [18] 范开敏, 杨莉, 彭述明, 龙兴贵, 吴仲成, 祖小涛. 第一性原理计算α-ScDx(D=H,He)的弹性常数.  , 2011, 60(7): 076201. doi: 10.7498/aps.60.076201
    [19] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究.  , 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [20] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
计量
  • 文章访问数:  6387
  • PDF下载量:  423
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-20
  • 修回日期:  2018-03-18
  • 刊出日期:  2018-06-05

/

返回文章
返回
Baidu
map