-
Continuous variable (CV) audio-band frequency squeezed states at the fiber telecommunication wavelength is an important quantum resource for the practical applications based on optical fiber. As is well known, the optical power attenuation and phase diffusion effect of light at 1.3 μm in standard telecommunication fibres are low and small, respectively. The audio-band frequency squeezed light at 1.34 μm can be utilized to realize quantum precision measurement, such as quantum-enhanced sensing in the low-frequency range, laser interferometer for gravitational wave detection. In this paper, CV audio-band frequency vacuum squeezed states at 1.3 μm are experimentally generated by using a type-I degenerate optical parametric oscillator (DOPO) below the threshold. A home-made continuous-wave single-frequency dual-wavelength (671 nm and 1.34 μm) Nd:YVO4/LBO laser is used as a pump source for DOPO based on a type-I quasi-phase-matched periodically poled KTiOPO4 (PPKTP) crystal. Mode cleaners with a finesse of 400 and linewidth of 0.75 MHz are used to filter the noise of lasers at 671 nm and 1.34 μm, respectively. The intensity noises of the two lasers reach a shot noise level for analysis frequencies higher than 1.0 MHz and their phase noises reach shot noise level for analysis frequencies higher than 1.3 MHz, respectively. The low noise single-frequency 671 nm laser is utilized as a pump of the DOPO. The threshold power of the DOPO is 450 mW. In order to detect the audio-band frequency vacuum squeezed states, the power of local oscillator of a homodyne detector system is optimized to 60 μupW. Furthermore, the effect of common mode rejection ratio (CMRR) of detectors is discussed in detecting the audio-band frequency vacuum squeezed states. Improvement of CMRR of detectors is a good way to detect the audio-band frequency vacuum squeezed states effectively. When the phase matching temperature of PPKTP crystal is controlled at 53℃ by using a home-made temperature controller and the pump power is 95 mW, the vacuum squeezed states are generated at analysis frequency ranging from 8-100 kHz. A maximum measured squeeze of 5.0 dB is obtained at analysis frequency of 36 kHz. A 3.0 dB squeezed light is obtained at an audio-band frequency of 8 kHz.
-
Keywords:
- quantum optics /
- audio-band frequencies squeezed light /
- degenerate optical parametric oscillator /
- fiber telecommunication wavelength of 1.34 μm
[1] Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513
[2] Wang X B, Hiroshima T, Tomita A, Hayashi M 2007 Phys. Rep. 448 1
[3] Weedbrook C, Pirandola S, Garcia-Patron R, Cerf N J, Ralph T C 2012 Rev. Mod. Phys. 84 621
[4] Wu L A, Xiao M, Kimble H J 1987 J. Opt. Soc. Am. B. 4 1465
[5] Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321
[6] Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Goßler S, Danzmann K, Schnabel R 2008 Phys. Rev. Lett. 100 033602
[7] Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553
[8] Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801
[9] Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, Mckenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472
[10] The L I G O Scientific Collaboration 2008 Nat. Photon. 7 613
[11] Travis H, Singh R, Dowling J P, Mikhailov E E 2012 Phys. Rev. A 86 023803
[12] Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A, Bowen W P 2013 Nat. Photon. 7 229
[13] McKenize K, Grosser N, Bowen W P, Whitcomb S E, Gray M B, McClelland D E, Lam P K 2004 Phys. Rev. Lett. 93 161105
[14] Stefszky M S, Mow-lowry C M, Chua S S Y, Shaddock D A, Buchler B C, Vahlbruch H, Khalaidovski A, Schnabel R, Lam P K, McClelland D E 2012 Class. Quantum. Grav. 29 145015
[15] Liu C J, Jing J T, Zhou Z F, Pooser R C, Hudelist F, Zhou L, Zhang W P 2011 Opt. Lett. 36 2979
[16] Liu Z J, Zhai Z H, Sun H X, Gao J R 2016 Acta Phys. Sin. 65 060401 (in Chinese)[刘增俊, 翟泽辉, 孙恒信, 郜江瑞 2016 65 060401]
[17] Yan Z H, Sun H X, Cai C X, Ma L, Liu K, Gao J R 2017 Acta Phys. Sin. 66 114205 (in Chinese)[闫子华, 孙恒信, 蔡春晓, 马龙, 刘奎, 郜江瑞 2017 66 114205]
[18] Yang W H, Jing X L, Yu X D, Zheng Y H, Peng K C 2017 Opt. Express 25 24262
[19] Yao L T, Feng J X, Gao Y H, Zhang K S 2017 Acta Sin. Quan. Opt. 23 99 (in Chinese)[要立婷, 冯晋霞, 高英豪, 张宽收 2017 量子光学学报 23 99]
[20] Bachor H A, Ralph T C A 2004 Guide to Experiments in Quantum Optics (Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA) pp247-250
[21] Li Y J, Feng J X, Li P, Zhang K S, Chen Y J, Lin Y F, Huang Y D 2013 Opt. Express 21 6082
[22] Liu X, Wang Y, Chang D X, Jia X J, Peng K C 2007 Acta Sin. Quan. Opt. 13 138 (in Chinese)[刘侠, 王宇, 常冬霞, 贾晓军, 彭堃墀 2007 量子光学学报 13 138]
[23] Hou F Y, Yu L, Jia X J, Zheng Y H, Xie C D, Peng K C 2011 Eur. Phys. J. D 62 433
[24] Zheng Y H, Wu Z Q, Huo M R, Zhou H J 2013 Chin. Phys. B 22 094206
[25] Aoki T, Takahashi G, Furusawa A 2006 Opt. Express 14 6930
[26] Yang W H, Jin X L, Yu X D, Zheng Y H, Peng K C 2017 Opt. Express 25 22262
[27] Ma Y Y, Feng J X, Wan Z J, Gao Y H, Zhang K S 2017 Acta Phys. Sin. 66 244205 (in Chinese)[马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收 2017 66 244205]
-
[1] Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513
[2] Wang X B, Hiroshima T, Tomita A, Hayashi M 2007 Phys. Rep. 448 1
[3] Weedbrook C, Pirandola S, Garcia-Patron R, Cerf N J, Ralph T C 2012 Rev. Mod. Phys. 84 621
[4] Wu L A, Xiao M, Kimble H J 1987 J. Opt. Soc. Am. B. 4 1465
[5] Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321
[6] Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Goßler S, Danzmann K, Schnabel R 2008 Phys. Rev. Lett. 100 033602
[7] Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553
[8] Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801
[9] Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, Mckenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472
[10] The L I G O Scientific Collaboration 2008 Nat. Photon. 7 613
[11] Travis H, Singh R, Dowling J P, Mikhailov E E 2012 Phys. Rev. A 86 023803
[12] Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A, Bowen W P 2013 Nat. Photon. 7 229
[13] McKenize K, Grosser N, Bowen W P, Whitcomb S E, Gray M B, McClelland D E, Lam P K 2004 Phys. Rev. Lett. 93 161105
[14] Stefszky M S, Mow-lowry C M, Chua S S Y, Shaddock D A, Buchler B C, Vahlbruch H, Khalaidovski A, Schnabel R, Lam P K, McClelland D E 2012 Class. Quantum. Grav. 29 145015
[15] Liu C J, Jing J T, Zhou Z F, Pooser R C, Hudelist F, Zhou L, Zhang W P 2011 Opt. Lett. 36 2979
[16] Liu Z J, Zhai Z H, Sun H X, Gao J R 2016 Acta Phys. Sin. 65 060401 (in Chinese)[刘增俊, 翟泽辉, 孙恒信, 郜江瑞 2016 65 060401]
[17] Yan Z H, Sun H X, Cai C X, Ma L, Liu K, Gao J R 2017 Acta Phys. Sin. 66 114205 (in Chinese)[闫子华, 孙恒信, 蔡春晓, 马龙, 刘奎, 郜江瑞 2017 66 114205]
[18] Yang W H, Jing X L, Yu X D, Zheng Y H, Peng K C 2017 Opt. Express 25 24262
[19] Yao L T, Feng J X, Gao Y H, Zhang K S 2017 Acta Sin. Quan. Opt. 23 99 (in Chinese)[要立婷, 冯晋霞, 高英豪, 张宽收 2017 量子光学学报 23 99]
[20] Bachor H A, Ralph T C A 2004 Guide to Experiments in Quantum Optics (Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA) pp247-250
[21] Li Y J, Feng J X, Li P, Zhang K S, Chen Y J, Lin Y F, Huang Y D 2013 Opt. Express 21 6082
[22] Liu X, Wang Y, Chang D X, Jia X J, Peng K C 2007 Acta Sin. Quan. Opt. 13 138 (in Chinese)[刘侠, 王宇, 常冬霞, 贾晓军, 彭堃墀 2007 量子光学学报 13 138]
[23] Hou F Y, Yu L, Jia X J, Zheng Y H, Xie C D, Peng K C 2011 Eur. Phys. J. D 62 433
[24] Zheng Y H, Wu Z Q, Huo M R, Zhou H J 2013 Chin. Phys. B 22 094206
[25] Aoki T, Takahashi G, Furusawa A 2006 Opt. Express 14 6930
[26] Yang W H, Jin X L, Yu X D, Zheng Y H, Peng K C 2017 Opt. Express 25 22262
[27] Ma Y Y, Feng J X, Wan Z J, Gao Y H, Zhang K S 2017 Acta Phys. Sin. 66 244205 (in Chinese)[马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收 2017 66 244205]
Catalog
Metrics
- Abstract views: 5965
- PDF Downloads: 58
- Cited By: 0