-
通过研究孤立二能级原子与双模纠缠相干光场的相互作用,分析了体系中原子偶极压缩量子效应的时间演化规律.体系中作用场模的性质决定了原子偶极压缩程度;同时定义了体系的Cauchy-Schwarz不等式破坏参数ΔV,研究了不同条件下参数ΔV的时间演化特性,Cauchy-Schwarz不等式破坏程度和体系中所具有的非经典特性是一致的;即可以通过调控相干场参数来远程控制体系中的非经典特性.
-
关键词:
- 量子光学 /
- 双模纠缠相干态 /
- 偶极压缩效应 /
- Cauchy-Schwarz 不等式
By studying the interaction of isolated two-level atom with two-mode entangled coherent state optical field, the time evolution of dipole squeezing quantum effect in the system is investigated in detail. The results show that the properties of interaction coherent mode determine the degree of atom dipole squeezing. Parameter ΔV of violation of Cauchy-Schwarz inequality of the interaction system is defined. Time evolution of parameter ΔVis studied, and it can be seen evidently from the results that the degree of violation of Cauchy-Schwarz inequality accords with the nonclassical property of interaction system. Through tuning the parameter of the coherent field, we can easily perform the remote control of the noncommercial properties.-
Keywords:
- quantum optics /
- two-mode entangled coherent states /
- dipole squeezing effect /
- Cauchy-Schwarz inequality
[1] Yang C P, Guo G C 1999 Phys. Lett. A 255 129
[2] Berns D M, Oliver W D, Valenzuela S O, Shytov A V, Berggren K K, Levitov L S, Orlando T P 2006 Phys. Rev. Lett. 97 150502
[3] Meunier T, Le Diffon A, Ruef C 2006 Phys. Rev. A 74 033802
[4] Walls D F 1983 Nature 306 141
[5] Buzek V 1989 J. Mod. Opt. 36 1151
[6] Wódkiewicz K, Knight P L, Buckle S J, Bamett S M 1987 Phys. Rev. A 35 2567
[7] Wu L A, Kimble H J, Hall J L, Wu H 1986 Phys. Rev. Lett. 57 2520
[8] Grosshans F, Cerf N J 2004 Phys. Rev. Lett. 92 047905
[9] Zhang Q, Li F L, Li H R 2006 Acta Phys. Sin. 55 2275 (in Chinese) [张 茜、李福利、李宏荣 2006 55 2275]
[10] Pan J W, Gasparoni S 2001 Phys. Rev. Lett. 86 4435
[11] Vanenk S J, Hirota O 2001 Phys. Rev. A 64 022313
[12] Lu H X, Li Y D 2009 Chin. Phys. B 18 40
[13] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[14] Sanders B C 1992 Phys. Rev. A 45 6811
[15] Solano E, Agarwal G S, Walther H 2003 Phys. Rev. Lett. 90 027903
[16] Zhang Y J, Xia Y J, Ren T Q, Du X M, Liu Y L 2009 Acta Phys. Sin. 58 723 (in Chinese)[张英杰、夏云杰、任廷琦等 2009 58 723]
[17] Walls D F, Zoller P 1981 Phys. Rev. Lett. 47 709
[18] Xia Y J, Gao D Y 2007 Acta Phys. Sin. 56 3703 (in Chinese) [夏云杰、高德营 2007 56 3703]
[19] Buzek V, Barranco A, Knight P L 1992 Phys. Rev. A 45 6570
-
[1] Yang C P, Guo G C 1999 Phys. Lett. A 255 129
[2] Berns D M, Oliver W D, Valenzuela S O, Shytov A V, Berggren K K, Levitov L S, Orlando T P 2006 Phys. Rev. Lett. 97 150502
[3] Meunier T, Le Diffon A, Ruef C 2006 Phys. Rev. A 74 033802
[4] Walls D F 1983 Nature 306 141
[5] Buzek V 1989 J. Mod. Opt. 36 1151
[6] Wódkiewicz K, Knight P L, Buckle S J, Bamett S M 1987 Phys. Rev. A 35 2567
[7] Wu L A, Kimble H J, Hall J L, Wu H 1986 Phys. Rev. Lett. 57 2520
[8] Grosshans F, Cerf N J 2004 Phys. Rev. Lett. 92 047905
[9] Zhang Q, Li F L, Li H R 2006 Acta Phys. Sin. 55 2275 (in Chinese) [张 茜、李福利、李宏荣 2006 55 2275]
[10] Pan J W, Gasparoni S 2001 Phys. Rev. Lett. 86 4435
[11] Vanenk S J, Hirota O 2001 Phys. Rev. A 64 022313
[12] Lu H X, Li Y D 2009 Chin. Phys. B 18 40
[13] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[14] Sanders B C 1992 Phys. Rev. A 45 6811
[15] Solano E, Agarwal G S, Walther H 2003 Phys. Rev. Lett. 90 027903
[16] Zhang Y J, Xia Y J, Ren T Q, Du X M, Liu Y L 2009 Acta Phys. Sin. 58 723 (in Chinese)[张英杰、夏云杰、任廷琦等 2009 58 723]
[17] Walls D F, Zoller P 1981 Phys. Rev. Lett. 47 709
[18] Xia Y J, Gao D Y 2007 Acta Phys. Sin. 56 3703 (in Chinese) [夏云杰、高德营 2007 56 3703]
[19] Buzek V, Barranco A, Knight P L 1992 Phys. Rev. A 45 6570
计量
- 文章访问数: 8819
- PDF下载量: 765
- 被引次数: 0