-
Continuous variable (CV) quantum entanglement is a fundamental resource of CV quantum communication and quantum computation. It is useful in a wide variety of applications, including quantum teleportation, quantum dense coding, quantum key distribution, and high-precision quantum measurement. In this paper, we generate CV quantum entanglement at a telecommunication wavelength of 1342 nm by using a nondegenerate optical parametric amplifier (NOPA) with a type-Ⅱ periodically poled KTiOPO4 (PPKTP) crystal. A home-made continuous-wave single-frequency dual-wavelength (671 nm and 1342 nm) Nd:YVO4/LiB3O5 laser is achieved with output powers of 1.5 W (671 nm) and 1.3 W (1342 nm). Then a mode cleaner (MC1) with a fineness of 400 and linewidth of 0.75 MHz and a mode cleaner MC2 with a fineness of 400 and linewidth of 0.75 MHz are used to filter the noises of laser at 1342 nm and 671 nm, respectively. By using MCs, the intensity noise of laser reaches a shot noise level (SNL) for analysis frequencies higher than 1.0 MHz, and the phase noise of laser reaches an SNL for analysis frequencies higher than 1.3 MHz. Utilizing this kind of low noise single-frequency 671 nm laser as a pump, a doubly-resonant optical parametric oscillator with a threshold of 325 mW is realised. When the low noise single-frequency 1342 nm laser is injected as a signal and the relative phase between the pump and injected signal is locked to , the NOPA is operated at deamplification. After optimizing the temperature of the type-Ⅱ PPKTP crystal and at a pump power of 260 mW, Einstein-Podolsky-Rosen (EPR)-entangled beams with quantum correlation of 3.0 dB for both the amplitude and phase quadratures are experimentally generated. The strength of EPR-entangled beams is relatively low. It is maybe due to the low nonlinear conversion efficiency and large absorption of the type-Ⅱ PPKTP crystal at 671 nm and 1342 nm. The generated CV quantum entanglement at 1.34 m has lower transmission loss and smaller phase diffusion effect in a silica fiber. The research contributes to a high quality quantum source for the CV quantum communication based on existing telecommunication fiber networks.
-
Keywords:
- quantum optics /
- continuous variable quantum entanglement /
- optical parametric amplifier /
- telecommunication wavelength of 1.34 m
[1] Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513
[2] Weedbrook C, Pirandola S, Garcia-Patron R, Cerf N J, Ralph T C 2012 Rev. Mod. Phys. 84 621
[3] Zhai Z H, Li Y M, Wang S K, Guo J, Zhang T C, Gao J R 2005 Acta Phys. Sin. 54 2710 (in Chinese) [翟泽辉, 李永明, 王少凯, 郭娟, 张天才, 郜江瑞 2005 54 2710]
[4] Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E, Furusawa A 2011 Science 332 330
[5] Madsen L S, Usenko V C, Lassen M, Filip R, Andersen U L 2012 Nat. Commun. 3 1083
[6] Song H C, Gong L H, Zhou N R 2012 Acta Phys. Sin. 61 154206 (in Chinese) [宋汉冲, 龚黎华, 周南润 2012 61 154206]
[7] Bachor H A, Ralph T C 2004 A Guide to Experiments in Quantum Optics (2nd Ed.) (Berlin: Wiley-VCH) pp247-250
[8] Li Y J, Feng J X, Li P, Zhang K S, Chen Y J, Lin Y F, Huang Y D 2013 Opt. Express 21 6082
[9] Liu X, Wang Y, Chang D X, Jia X J, Peng K C 2007 Acta Sin. Quan. Opt. 13 138 (in Chinese) [刘侠, 王宇, 常冬霞, 贾晓军, 彭堃墀 2007 量子光学学报 13 138]
[10] Ou Z Y, Pereira S F, Kimble H J, Peng K C 1992 Phys. Rev. Lett. 68 3663
[11] Furusawa A, Sorensen J L, Braustein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706
[12] Zhou Y Y, Jia X J, Li F, Xie C D, Peng K C 2015 Opt. Express 23 4952
[13] Eberle T, Handchen V, Duhme J, Franz T, Werner R F, Schnabel R 2011 Phys. Rev. A 83 052329
[14] Huo M R, Qin J L, Yan Z H, Jia X J, Peng K C 2016 Appl. Phys. Lett. 109 221101
[15] Black E D 2001 Am. J. Phys. 69 79
[16] Shi Z, Su X L 2010 Acta Sin. Quan. Opt. 16 158 (in Chinese) [石柱, 苏晓龙 2010 量子光学学报 16 158]
[17] Villar A S 2008 Am. J. Phys. 76 922
[18] Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763
[19] Reid M D, Drummond P D 1988 Phys. Rev. Lett. 60 2731
[20] Giovannetti V, Mancini S, Vitali D, Tombesi P 2003 Phys. Rev. A 67 022320
-
[1] Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513
[2] Weedbrook C, Pirandola S, Garcia-Patron R, Cerf N J, Ralph T C 2012 Rev. Mod. Phys. 84 621
[3] Zhai Z H, Li Y M, Wang S K, Guo J, Zhang T C, Gao J R 2005 Acta Phys. Sin. 54 2710 (in Chinese) [翟泽辉, 李永明, 王少凯, 郭娟, 张天才, 郜江瑞 2005 54 2710]
[4] Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E, Furusawa A 2011 Science 332 330
[5] Madsen L S, Usenko V C, Lassen M, Filip R, Andersen U L 2012 Nat. Commun. 3 1083
[6] Song H C, Gong L H, Zhou N R 2012 Acta Phys. Sin. 61 154206 (in Chinese) [宋汉冲, 龚黎华, 周南润 2012 61 154206]
[7] Bachor H A, Ralph T C 2004 A Guide to Experiments in Quantum Optics (2nd Ed.) (Berlin: Wiley-VCH) pp247-250
[8] Li Y J, Feng J X, Li P, Zhang K S, Chen Y J, Lin Y F, Huang Y D 2013 Opt. Express 21 6082
[9] Liu X, Wang Y, Chang D X, Jia X J, Peng K C 2007 Acta Sin. Quan. Opt. 13 138 (in Chinese) [刘侠, 王宇, 常冬霞, 贾晓军, 彭堃墀 2007 量子光学学报 13 138]
[10] Ou Z Y, Pereira S F, Kimble H J, Peng K C 1992 Phys. Rev. Lett. 68 3663
[11] Furusawa A, Sorensen J L, Braustein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706
[12] Zhou Y Y, Jia X J, Li F, Xie C D, Peng K C 2015 Opt. Express 23 4952
[13] Eberle T, Handchen V, Duhme J, Franz T, Werner R F, Schnabel R 2011 Phys. Rev. A 83 052329
[14] Huo M R, Qin J L, Yan Z H, Jia X J, Peng K C 2016 Appl. Phys. Lett. 109 221101
[15] Black E D 2001 Am. J. Phys. 69 79
[16] Shi Z, Su X L 2010 Acta Sin. Quan. Opt. 16 158 (in Chinese) [石柱, 苏晓龙 2010 量子光学学报 16 158]
[17] Villar A S 2008 Am. J. Phys. 76 922
[18] Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763
[19] Reid M D, Drummond P D 1988 Phys. Rev. Lett. 60 2731
[20] Giovannetti V, Mancini S, Vitali D, Tombesi P 2003 Phys. Rev. A 67 022320
Catalog
Metrics
- Abstract views: 7799
- PDF Downloads: 194
- Cited By: 0