搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续变量1.34 m量子纠缠态光场的实验制备

马亚云 冯晋霞 万振菊 高英豪 张宽收

引用本文:
Citation:

连续变量1.34 m量子纠缠态光场的实验制备

马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收

Continuous variable quantum entanglement at 1.34 m

Ma Ya-Yun, Feng Jin-Xia, Wan Zhen-Ju, Gao Ying-Hao, Zhang Kuan-Shou
PDF
导出引用
  • 设计研制了连续单频671 nm/1342 nm双波长激光器,并通过模式清洁器降低了激光器额外噪声.利用该低噪声连续单频激光器抽运由Ⅱ类准相位匹配晶体构成的双共振非简并光学参量放大器,实验制备出纠缠度达3 dB的光通信波段1.34 m连续变量量子纠缠态光场.该波段量子纠缠态光场在光纤中传输损耗低且相散效应小,与现有的光纤通信系统相兼容,可用于实现基于光纤的实用化连续变量量子通信.
    Continuous variable (CV) quantum entanglement is a fundamental resource of CV quantum communication and quantum computation. It is useful in a wide variety of applications, including quantum teleportation, quantum dense coding, quantum key distribution, and high-precision quantum measurement. In this paper, we generate CV quantum entanglement at a telecommunication wavelength of 1342 nm by using a nondegenerate optical parametric amplifier (NOPA) with a type-Ⅱ periodically poled KTiOPO4 (PPKTP) crystal. A home-made continuous-wave single-frequency dual-wavelength (671 nm and 1342 nm) Nd:YVO4/LiB3O5 laser is achieved with output powers of 1.5 W (671 nm) and 1.3 W (1342 nm). Then a mode cleaner (MC1) with a fineness of 400 and linewidth of 0.75 MHz and a mode cleaner MC2 with a fineness of 400 and linewidth of 0.75 MHz are used to filter the noises of laser at 1342 nm and 671 nm, respectively. By using MCs, the intensity noise of laser reaches a shot noise level (SNL) for analysis frequencies higher than 1.0 MHz, and the phase noise of laser reaches an SNL for analysis frequencies higher than 1.3 MHz. Utilizing this kind of low noise single-frequency 671 nm laser as a pump, a doubly-resonant optical parametric oscillator with a threshold of 325 mW is realised. When the low noise single-frequency 1342 nm laser is injected as a signal and the relative phase between the pump and injected signal is locked to , the NOPA is operated at deamplification. After optimizing the temperature of the type-Ⅱ PPKTP crystal and at a pump power of 260 mW, Einstein-Podolsky-Rosen (EPR)-entangled beams with quantum correlation of 3.0 dB for both the amplitude and phase quadratures are experimentally generated. The strength of EPR-entangled beams is relatively low. It is maybe due to the low nonlinear conversion efficiency and large absorption of the type-Ⅱ PPKTP crystal at 671 nm and 1342 nm. The generated CV quantum entanglement at 1.34 m has lower transmission loss and smaller phase diffusion effect in a silica fiber. The research contributes to a high quality quantum source for the CV quantum communication based on existing telecommunication fiber networks.
      通信作者: 冯晋霞, fengjx@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0301401)资助的课题.
      Corresponding author: Feng Jin-Xia, fengjx@sxu.edu.cn
    • Funds: Project supported by the National Key RD Program of China (Grant No. 2016YFA0301401).
    [1]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513

    [2]

    Weedbrook C, Pirandola S, Garcia-Patron R, Cerf N J, Ralph T C 2012 Rev. Mod. Phys. 84 621

    [3]

    Zhai Z H, Li Y M, Wang S K, Guo J, Zhang T C, Gao J R 2005 Acta Phys. Sin. 54 2710 (in Chinese) [翟泽辉, 李永明, 王少凯, 郭娟, 张天才, 郜江瑞 2005 54 2710]

    [4]

    Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E, Furusawa A 2011 Science 332 330

    [5]

    Madsen L S, Usenko V C, Lassen M, Filip R, Andersen U L 2012 Nat. Commun. 3 1083

    [6]

    Song H C, Gong L H, Zhou N R 2012 Acta Phys. Sin. 61 154206 (in Chinese) [宋汉冲, 龚黎华, 周南润 2012 61 154206]

    [7]

    Bachor H A, Ralph T C 2004 A Guide to Experiments in Quantum Optics (2nd Ed.) (Berlin: Wiley-VCH) pp247-250

    [8]

    Li Y J, Feng J X, Li P, Zhang K S, Chen Y J, Lin Y F, Huang Y D 2013 Opt. Express 21 6082

    [9]

    Liu X, Wang Y, Chang D X, Jia X J, Peng K C 2007 Acta Sin. Quan. Opt. 13 138 (in Chinese) [刘侠, 王宇, 常冬霞, 贾晓军, 彭堃墀 2007 量子光学学报 13 138]

    [10]

    Ou Z Y, Pereira S F, Kimble H J, Peng K C 1992 Phys. Rev. Lett. 68 3663

    [11]

    Furusawa A, Sorensen J L, Braustein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706

    [12]

    Zhou Y Y, Jia X J, Li F, Xie C D, Peng K C 2015 Opt. Express 23 4952

    [13]

    Eberle T, Handchen V, Duhme J, Franz T, Werner R F, Schnabel R 2011 Phys. Rev. A 83 052329

    [14]

    Huo M R, Qin J L, Yan Z H, Jia X J, Peng K C 2016 Appl. Phys. Lett. 109 221101

    [15]

    Black E D 2001 Am. J. Phys. 69 79

    [16]

    Shi Z, Su X L 2010 Acta Sin. Quan. Opt. 16 158 (in Chinese) [石柱, 苏晓龙 2010 量子光学学报 16 158]

    [17]

    Villar A S 2008 Am. J. Phys. 76 922

    [18]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763

    [19]

    Reid M D, Drummond P D 1988 Phys. Rev. Lett. 60 2731

    [20]

    Giovannetti V, Mancini S, Vitali D, Tombesi P 2003 Phys. Rev. A 67 022320

  • [1]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513

    [2]

    Weedbrook C, Pirandola S, Garcia-Patron R, Cerf N J, Ralph T C 2012 Rev. Mod. Phys. 84 621

    [3]

    Zhai Z H, Li Y M, Wang S K, Guo J, Zhang T C, Gao J R 2005 Acta Phys. Sin. 54 2710 (in Chinese) [翟泽辉, 李永明, 王少凯, 郭娟, 张天才, 郜江瑞 2005 54 2710]

    [4]

    Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E, Furusawa A 2011 Science 332 330

    [5]

    Madsen L S, Usenko V C, Lassen M, Filip R, Andersen U L 2012 Nat. Commun. 3 1083

    [6]

    Song H C, Gong L H, Zhou N R 2012 Acta Phys. Sin. 61 154206 (in Chinese) [宋汉冲, 龚黎华, 周南润 2012 61 154206]

    [7]

    Bachor H A, Ralph T C 2004 A Guide to Experiments in Quantum Optics (2nd Ed.) (Berlin: Wiley-VCH) pp247-250

    [8]

    Li Y J, Feng J X, Li P, Zhang K S, Chen Y J, Lin Y F, Huang Y D 2013 Opt. Express 21 6082

    [9]

    Liu X, Wang Y, Chang D X, Jia X J, Peng K C 2007 Acta Sin. Quan. Opt. 13 138 (in Chinese) [刘侠, 王宇, 常冬霞, 贾晓军, 彭堃墀 2007 量子光学学报 13 138]

    [10]

    Ou Z Y, Pereira S F, Kimble H J, Peng K C 1992 Phys. Rev. Lett. 68 3663

    [11]

    Furusawa A, Sorensen J L, Braustein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706

    [12]

    Zhou Y Y, Jia X J, Li F, Xie C D, Peng K C 2015 Opt. Express 23 4952

    [13]

    Eberle T, Handchen V, Duhme J, Franz T, Werner R F, Schnabel R 2011 Phys. Rev. A 83 052329

    [14]

    Huo M R, Qin J L, Yan Z H, Jia X J, Peng K C 2016 Appl. Phys. Lett. 109 221101

    [15]

    Black E D 2001 Am. J. Phys. 69 79

    [16]

    Shi Z, Su X L 2010 Acta Sin. Quan. Opt. 16 158 (in Chinese) [石柱, 苏晓龙 2010 量子光学学报 16 158]

    [17]

    Villar A S 2008 Am. J. Phys. 76 922

    [18]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763

    [19]

    Reid M D, Drummond P D 1988 Phys. Rev. Lett. 60 2731

    [20]

    Giovannetti V, Mancini S, Vitali D, Tombesi P 2003 Phys. Rev. A 67 022320

  • [1] 李锦芳, 何东山, 王一平. 一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制.  , 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [2] 郑智勇, 陈立杰, 向吕, 王鹤, 王一平. 一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制.  , 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [3] 李靖, 刘运全. 基于相对论自由电子的量子物理.  , 2022, 71(23): 233302. doi: 10.7498/aps.71.20221289
    [4] 刘奎, 马龙, 苏必达, 李佳明, 孙恒信, 郜江瑞. 基于非简并光学参量放大器产生光学频率梳纠缠态.  , 2020, 69(12): 124203. doi: 10.7498/aps.69.20200107
    [5] 李娟, 李佳明, 蔡春晓, 孙恒信, 刘奎, 郜江瑞. 优化抽运空间分布实现连续变量超纠缠的纠缠增强.  , 2019, 68(3): 034204. doi: 10.7498/aps.68.20181625
    [6] 赵士平, 刘玉玺, 郑东宁. 新型超导量子比特及量子物理问题的研究.  , 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [7] 冯晋霞, 杜京师, 靳晓丽, 李渊骥, 张宽收. 音频段1.34 μm压缩态光场的实验制备.  , 2018, 67(17): 174203. doi: 10.7498/aps.67.20180301
    [8] 万振菊, 冯晋霞, 成健, 张宽收. 连续变量纠缠态光场在光纤中传输特性的实验研究.  , 2018, 67(2): 024203. doi: 10.7498/aps.67.20171542
    [9] 孙志妮, 冯晋霞, 万振菊, 张宽收. 1.5m光通信波段明亮压缩态光场的产生及其Wigner函数的重构.  , 2016, 65(4): 044203. doi: 10.7498/aps.65.044203
    [10] 卢道明, 邱昌东. 弱相干场原子-腔-光纤系统中的量子失协.  , 2014, 63(11): 110303. doi: 10.7498/aps.63.110303
    [11] 卢道明. 腔量子电动力学系统中耦合三原子的纠缠特性.  , 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [12] 王菊霞. 二能级原子与多模光场简并多光子共振相互作用系统中量子保真度的演化特性.  , 2014, 63(18): 184203. doi: 10.7498/aps.63.184203
    [13] 严晓波, 杨柳, 田雪冬, 刘一谋, 张岩. 参量放大器腔中光力诱导透明与本征模劈裂性质.  , 2014, 63(20): 204201. doi: 10.7498/aps.63.204201
    [14] 周媛媛, 张合庆, 周学军, 田培根. 基于标记配对相干态光源的诱骗态量子密钥分配性能分析.  , 2013, 62(20): 200302. doi: 10.7498/aps.62.200302
    [15] 卢道明. 三参数双模压缩粒子数态的量子特性.  , 2012, 61(21): 210302. doi: 10.7498/aps.61.210302
    [16] 周媛媛, 周学军. 基于弱相干态光源的非正交编码被动诱骗态量子密钥分配.  , 2011, 60(10): 100301. doi: 10.7498/aps.60.100301
    [17] 赵超樱, 谭维翰. 色散效应对光学参量放大器量子起伏特性的影响.  , 2010, 59(4): 2498-2504. doi: 10.7498/aps.59.2498
    [18] 张英杰, 夏云杰, 任廷琦, 杜秀梅, 刘玉玲. 反Jaynes-Cummings模型下纠缠相干光场量子特性的研究.  , 2009, 58(2): 722-728. doi: 10.7498/aps.58.722
    [19] 江金环, 王永龙, 李子平. 稳态光折变空间孤子传输的量子理论.  , 2004, 53(12): 4070-4074. doi: 10.7498/aps.53.4070
    [20] 王丹翎, 龚旗煌, 汪凯戈, 杨国健. 光学简并参量振荡中的量子非破坏性测量.  , 2000, 49(8): 1484-1489. doi: 10.7498/aps.49.1484
计量
  • 文章访问数:  7744
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-18
  • 修回日期:  2017-08-26
  • 刊出日期:  2017-12-05

/

返回文章
返回
Baidu
map