Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Performance analysis of decoy-state quantum key distribution with a heralded pair coherent state photon source

Zhou Yuan-Yuan Zhang He-Qing Zhou Xue-Jun Tian Pei-Gen

Citation:

Performance analysis of decoy-state quantum key distribution with a heralded pair coherent state photon source

Zhou Yuan-Yuan, Zhang He-Qing, Zhou Xue-Jun, Tian Pei-Gen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A comprehensive analysis is made on the performance of decoy-state quantum key distribution with a heralded pair coherent state photon source from the effectiveness, stability and feasibility. The key generation rate, quantum bit error rate, and optimal signal intensity each as a function of secure transmission distance are simulated and analyzed by the three-intensity decoy-state method based on a heralded pair coherent state photon source with four groups of experimental data. Considering the intensity fluctuation, the stability of this method is simulated and discussed. Furthermore, the feasibility of the simple and easy method that is proposed with a heralded pair coherent state photon source is analyzed. The simulation results show that the key generation rate and secure transmission distance obtained from the decoy-state method with a heralded pair coherent state photon source are better than those obtained from the methods with a weak coherent state source and heralded single photon source. With the same intensity fluctuation, the heralded pair coherent state photon source is less stable than the heralded single photon source, but more robust than the weak coherent state source. However, the advantage in the effectiveness of the heralded single photon source can give rise to the shortage of the stability. Moreover, the two same modes of the heralded single photon source provide the feasibility to design a simple and easy passive decoy-state method.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA7014061).
    [1]

    Bennett C H, Brassard G 1984 Processing of IEEE International Conference on Computers, Systems, and Signal Processing (New York: IEEE) p175

    [2]

    Wang X B 2005 Phys. Rev. Lett. 94 230503

    [3]

    Hwang W Y 2003 Phys. Rev. Lett. 91 057901

    [4]

    Lo H K, Ma X F, Chen K 2005 Phys. Rev. Lett. 94 230504

    [5]

    Ma X F, Qi B, Zhao Y, Lo H K 2005 Phys. Rev. A 72 012326

    [6]

    Wang Q, Wang X B, Guo G C 2007 Phys. Rev. A 75 012312

    [7]

    Yin Z Q, Han Z F, Sun F W, Guo G C 2007 Phys. Rev. A 76 014304

    [8]

    Zhang S L, Zou X B, Li K, Jin C H, Guo G C 2007 Phys. Rev. A 76 044304

    [9]

    Mi J L, Wang F Q, Lin Q Q, Liang R S, Liu S H 2008 Acta Phys. Sin. 57 678 (in Chinese) [米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪 2008 57 678]

    [10]

    Quan D X, Pei C X, Zhu C H, Liu D 2008 Acta Phys. Sin. 57 5600 (in Chinese) [权东晓, 裴昌幸, 朱畅华, 刘丹 2008 57 5600]

    [11]

    Mi J L, Wang F Q, Lin Q Q, Liang R S 2008 Chin. Phys. B 17 1178

    [12]

    Hu H P, Wang J D, Huang Y X, Liu S H, Lu W 2010 Acta Phys. Sin. 59 287 (in Chinese) [胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍 2010 59 287]

    [13]

    Zhou Y Y, Zhou X J, Tian P G, Wang Y J 2013 Chin. Phys. B 22 010305

    [14]

    Zhao Y, Qi B, Ma X F, Lo H K, Qian L 2006 Phys. Rev. Lett. 96 070502

    [15]

    Tobias S M, Henning W, Martin F, Rupert U, Felix T, Thomas S, Josep P, Zoran S, Christian K, John G R, Anton Z, Harald W 2007 Phys. Rev. Lett. 98 010504

    [16]

    Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L, Guo G C 2008 Chin. Phys. Lett. 25 3547

    [17]

    Wang Q, Chen W, Xavier G, Swillo M, Zhang T, Sauge S, Tengner M, Han Z F, Guo G C, Karlsson A 2008 Phys. Rev. Lett. 100 090501

    [18]

    Wang X B 2007 Phys. Rev. A 75 052301

    [19]

    Wang X B, Peng C Z, Zhang J, Yang L, Pan J W 2008 Phys. Rev. A 77 042311

    [20]

    Wang S, Zhang S L, Li H W, Yin Z Q, Zhao Y B, Chen W, Han Z F, Guo G C 2009 Phys. Rev. A 79 062309

    [21]

    Hu J Z, Wang X B 2010 Phys. Rev. A 82 012331

    [22]

    Mauerer W, Silberhorn C 2007 Phys. Rev. A 75 050305

    [23]

    Adachi Y, Yamamoto T, Koashi M, Imoto N 2007 Phys. Rev. Lett. 99 180503

    [24]

    Curty M, Moroder T, Ma X F, Ltkenhaus N 2009 Opt. Lett. 34 3238

    [25]

    Curty M, Ma X F, Qi B, Moroder T 2010 Phys. Rev. A 81 022310

    [26]

    Zhou Y Y, Zhou X J 2011 Acta Phys. Sin. 60 100301 (in Chinese) [周媛媛, 周学军 2011 60 100301]

    [27]

    Zhang S L, Zou X B, Li C F, Jin C H, Guo G C 2009 Chin. Sci. Bull. 54 1863

    [28]

    Gottesman D, Lo H K, Ltkenhaus N, Preskill J 2004 Quantum Inf. Comput. 4 325

    [29]

    Agarwal G S 1986 Phys. Rev. Lett. 57 827

    [30]

    Ltkenhaus N 2000 Phys. Rev. A 61 052304

    [31]

    Ma X F 2006 Phys. Rev. A 74 052325

    [32]

    Townsend P D 1998 IEEE Photonics Technol. Lett. 10 1048

    [33]

    Ribordy G, Gautier J D, Gisin N, Guinnard O, Zbinden H 1998 Electron. Lett. 34 2116

    [34]

    Bourennane M, Gibson F, Karlsson A, Hening A, Jonsson P, Tsegaye T, Ljunggren D, Sundberg E1999 Opt. Express 4 383

    [35]

    Gobby C, Yuan Z L, Shields A J 2004 Appl. Phys. Lett. 84 3762

    [36]

    Zhou C, Bao W S, Fu X Q 2011 Sci. China 41 1136

    [37]

    Zhang H Q, Zhou Y Y, Zhou X J, Tian P G 2013 Optoelectron. Lett. 9 389

  • [1]

    Bennett C H, Brassard G 1984 Processing of IEEE International Conference on Computers, Systems, and Signal Processing (New York: IEEE) p175

    [2]

    Wang X B 2005 Phys. Rev. Lett. 94 230503

    [3]

    Hwang W Y 2003 Phys. Rev. Lett. 91 057901

    [4]

    Lo H K, Ma X F, Chen K 2005 Phys. Rev. Lett. 94 230504

    [5]

    Ma X F, Qi B, Zhao Y, Lo H K 2005 Phys. Rev. A 72 012326

    [6]

    Wang Q, Wang X B, Guo G C 2007 Phys. Rev. A 75 012312

    [7]

    Yin Z Q, Han Z F, Sun F W, Guo G C 2007 Phys. Rev. A 76 014304

    [8]

    Zhang S L, Zou X B, Li K, Jin C H, Guo G C 2007 Phys. Rev. A 76 044304

    [9]

    Mi J L, Wang F Q, Lin Q Q, Liang R S, Liu S H 2008 Acta Phys. Sin. 57 678 (in Chinese) [米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪 2008 57 678]

    [10]

    Quan D X, Pei C X, Zhu C H, Liu D 2008 Acta Phys. Sin. 57 5600 (in Chinese) [权东晓, 裴昌幸, 朱畅华, 刘丹 2008 57 5600]

    [11]

    Mi J L, Wang F Q, Lin Q Q, Liang R S 2008 Chin. Phys. B 17 1178

    [12]

    Hu H P, Wang J D, Huang Y X, Liu S H, Lu W 2010 Acta Phys. Sin. 59 287 (in Chinese) [胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍 2010 59 287]

    [13]

    Zhou Y Y, Zhou X J, Tian P G, Wang Y J 2013 Chin. Phys. B 22 010305

    [14]

    Zhao Y, Qi B, Ma X F, Lo H K, Qian L 2006 Phys. Rev. Lett. 96 070502

    [15]

    Tobias S M, Henning W, Martin F, Rupert U, Felix T, Thomas S, Josep P, Zoran S, Christian K, John G R, Anton Z, Harald W 2007 Phys. Rev. Lett. 98 010504

    [16]

    Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L, Guo G C 2008 Chin. Phys. Lett. 25 3547

    [17]

    Wang Q, Chen W, Xavier G, Swillo M, Zhang T, Sauge S, Tengner M, Han Z F, Guo G C, Karlsson A 2008 Phys. Rev. Lett. 100 090501

    [18]

    Wang X B 2007 Phys. Rev. A 75 052301

    [19]

    Wang X B, Peng C Z, Zhang J, Yang L, Pan J W 2008 Phys. Rev. A 77 042311

    [20]

    Wang S, Zhang S L, Li H W, Yin Z Q, Zhao Y B, Chen W, Han Z F, Guo G C 2009 Phys. Rev. A 79 062309

    [21]

    Hu J Z, Wang X B 2010 Phys. Rev. A 82 012331

    [22]

    Mauerer W, Silberhorn C 2007 Phys. Rev. A 75 050305

    [23]

    Adachi Y, Yamamoto T, Koashi M, Imoto N 2007 Phys. Rev. Lett. 99 180503

    [24]

    Curty M, Moroder T, Ma X F, Ltkenhaus N 2009 Opt. Lett. 34 3238

    [25]

    Curty M, Ma X F, Qi B, Moroder T 2010 Phys. Rev. A 81 022310

    [26]

    Zhou Y Y, Zhou X J 2011 Acta Phys. Sin. 60 100301 (in Chinese) [周媛媛, 周学军 2011 60 100301]

    [27]

    Zhang S L, Zou X B, Li C F, Jin C H, Guo G C 2009 Chin. Sci. Bull. 54 1863

    [28]

    Gottesman D, Lo H K, Ltkenhaus N, Preskill J 2004 Quantum Inf. Comput. 4 325

    [29]

    Agarwal G S 1986 Phys. Rev. Lett. 57 827

    [30]

    Ltkenhaus N 2000 Phys. Rev. A 61 052304

    [31]

    Ma X F 2006 Phys. Rev. A 74 052325

    [32]

    Townsend P D 1998 IEEE Photonics Technol. Lett. 10 1048

    [33]

    Ribordy G, Gautier J D, Gisin N, Guinnard O, Zbinden H 1998 Electron. Lett. 34 2116

    [34]

    Bourennane M, Gibson F, Karlsson A, Hening A, Jonsson P, Tsegaye T, Ljunggren D, Sundberg E1999 Opt. Express 4 383

    [35]

    Gobby C, Yuan Z L, Shields A J 2004 Appl. Phys. Lett. 84 3762

    [36]

    Zhou C, Bao W S, Fu X Q 2011 Sci. China 41 1136

    [37]

    Zhang H Q, Zhou Y Y, Zhou X J, Tian P G 2013 Optoelectron. Lett. 9 389

  • [1] Li Jin-Fang, He Dong-Shan, Wang Yi-Ping. Modulation of topological phase transition and topological quantum state of magnon-photon in one-dimensional coupled cavity lattices. Acta Physica Sinica, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [2] Zhang Jia-Yi, Chen Hua-Xing, Zhang Huan-Yu, Qian Xue-Rui, Zhang Chun-Hui, Wang Qin. Reference-frame-independent quantum key distribution based on passive light source monitoring. Acta Physica Sinica, 2023, 72(15): 150301. doi: 10.7498/aps.72.20230609
    [3] Ma Ya-Yun, Feng Jin-Xia, Wan Zhen-Ju, Gao Ying-Hao, Zhang Kuan-Shou. Continuous variable quantum entanglement at 1.34 m. Acta Physica Sinica, 2017, 66(24): 244205. doi: 10.7498/aps.66.244205
    [4] An Xue-Bi, Yin Zhen-Qiang, Han Zheng-Fu. Macro-micro entanglement in optical system and its application in quantum key distribution. Acta Physica Sinica, 2015, 64(14): 140303. doi: 10.7498/aps.64.140303
    [5] Lu Dao-Ming, Qiu Chang-Dong. Quantum discord in the system of two atoms trapped in weak coherent state cavities connected by an optical fiber. Acta Physica Sinica, 2014, 63(11): 110303. doi: 10.7498/aps.63.110303
    [6] Guo Bang-Hong, Yang Li, Xiang Chong, Guan Chong, Wu Ling-An, Liu Song-Hao. Quantum key distribution system based on combined modulation. Acta Physica Sinica, 2013, 62(13): 130303. doi: 10.7498/aps.62.130303
    [7] Zhao Feng. Simulation analysis of one-way error reconciliation protocol for quantum key distribution. Acta Physica Sinica, 2013, 62(20): 200303. doi: 10.7498/aps.62.200303
    [8] Jiao Rong-Zhen, Ding Tian, Wang Wen-Ji, Ma Hai-Qiang. Analysis statistical fluctuation of passive untrusted source for quantum key distribution system. Acta Physica Sinica, 2013, 62(18): 180302. doi: 10.7498/aps.62.180302
    [9] Lu Dao-Ming. The quantum properties of three-parameter two-mode squeezed number state. Acta Physica Sinica, 2012, 61(21): 210302. doi: 10.7498/aps.61.210302
    [10] Jiao Rong-Zhen, Tang Shao-Jie, Zhang Chao. Analysis of statistical fluctuation in decoy state quantum key distribution system. Acta Physica Sinica, 2012, 61(5): 050302. doi: 10.7498/aps.61.050302
    [11] Jiao Rong-Zhen, Zhang Chao, Ma Hai-Qiang. Decoy-state quantum key distribution with practical light source. Acta Physica Sinica, 2011, 60(11): 110303. doi: 10.7498/aps.60.110303
    [12] Wang Han, Yan Lian-Shan, Pan Wei, Luo Bin, Guo Zhen, Xu Ming-Feng. Performance analysis of decoy state quantum key distribution using two kinds of photon sources. Acta Physica Sinica, 2011, 60(3): 030304. doi: 10.7498/aps.60.030304
    [13] Zhou Yuan-Yuan, Zhou Xue-Jun. Nonorthogonal passive decoy-state quantum key distribution with a weak coherent state source. Acta Physica Sinica, 2011, 60(10): 100301. doi: 10.7498/aps.60.100301
    [14] Zhang Ying-Jie, Xia Yun-Jie, Ren Ting-Qi, Du Xiu-Mei, Liu Yu-Ling. Quantum properties of the entangled coherent light field under the anti-Jaynes-Cummings model. Acta Physica Sinica, 2009, 58(2): 722-728. doi: 10.7498/aps.58.722
    [15] Guo Bang-Hong, Lu Yi-Qun, Wang Fa-Qiang, Zhao Feng, Hu Min, Lin Yi-Man, Liao Chang-Jun, Liu Song-Hao. Real-time low-frequency vibration phase drift tracking and auto-compensation in phase-coded quantum key distribution system. Acta Physica Sinica, 2007, 56(7): 3695-3702. doi: 10.7498/aps.56.3695
    [16] Chen Jin-Jian, Han Zheng-Fu, Zhao Yi-Bo, Gui You-Zhen, Guo Guang-Can. The effect of balanced homodyne detection on continuous variable quantum key distribution. Acta Physica Sinica, 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
    [17] Yang Yu-Guang, Wen Qiao-Yan, Zhu Fu-Chen. A novel quantum key distribution scheme with unextendible product basis and exact entanglement basis. Acta Physica Sinica, 2005, 54(12): 5549-5553. doi: 10.7498/aps.54.5549
    [18] Yang Yu-Guang, Wen Qiao-Yan, Zhu Fu-Chen. A theoretical scheme for multi-user quantum authentication and key distribution in a network. Acta Physica Sinica, 2005, 54(9): 3995-3999. doi: 10.7498/aps.54.3995
    [19] Yang Yu-Guang, Wen Qiao-Yan, Zhu Fu-Chen. Multi-party multi-level quantum key distribution protocol based on entanglement swapping. Acta Physica Sinica, 2005, 54(12): 5544-5548. doi: 10.7498/aps.54.5544
    [20] Zhang Quan, Tang Chao-Jing, Zhang Shen-Qiang. . Acta Physica Sinica, 2002, 51(7): 1439-1447. doi: 10.7498/aps.51.1439
Metrics
  • Abstract views:  6254
  • PDF Downloads:  453
  • Cited By: 0
Publishing process
  • Received Date:  30 May 2013
  • Accepted Date:  27 June 2013
  • Published Online:  05 October 2013

/

返回文章
返回
Baidu
map