-
A comprehensive analysis is made on the performance of decoy-state quantum key distribution with a heralded pair coherent state photon source from the effectiveness, stability and feasibility. The key generation rate, quantum bit error rate, and optimal signal intensity each as a function of secure transmission distance are simulated and analyzed by the three-intensity decoy-state method based on a heralded pair coherent state photon source with four groups of experimental data. Considering the intensity fluctuation, the stability of this method is simulated and discussed. Furthermore, the feasibility of the simple and easy method that is proposed with a heralded pair coherent state photon source is analyzed. The simulation results show that the key generation rate and secure transmission distance obtained from the decoy-state method with a heralded pair coherent state photon source are better than those obtained from the methods with a weak coherent state source and heralded single photon source. With the same intensity fluctuation, the heralded pair coherent state photon source is less stable than the heralded single photon source, but more robust than the weak coherent state source. However, the advantage in the effectiveness of the heralded single photon source can give rise to the shortage of the stability. Moreover, the two same modes of the heralded single photon source provide the feasibility to design a simple and easy passive decoy-state method.
-
Keywords:
- quantum optics /
- quantum key distribution /
- heralded pair coherent state photon source /
- performance
[1] Bennett C H, Brassard G 1984 Processing of IEEE International Conference on Computers, Systems, and Signal Processing (New York: IEEE) p175
[2] Wang X B 2005 Phys. Rev. Lett. 94 230503
[3] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[4] Lo H K, Ma X F, Chen K 2005 Phys. Rev. Lett. 94 230504
[5] Ma X F, Qi B, Zhao Y, Lo H K 2005 Phys. Rev. A 72 012326
[6] Wang Q, Wang X B, Guo G C 2007 Phys. Rev. A 75 012312
[7] Yin Z Q, Han Z F, Sun F W, Guo G C 2007 Phys. Rev. A 76 014304
[8] Zhang S L, Zou X B, Li K, Jin C H, Guo G C 2007 Phys. Rev. A 76 044304
[9] Mi J L, Wang F Q, Lin Q Q, Liang R S, Liu S H 2008 Acta Phys. Sin. 57 678 (in Chinese) [米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪 2008 57 678]
[10] Quan D X, Pei C X, Zhu C H, Liu D 2008 Acta Phys. Sin. 57 5600 (in Chinese) [权东晓, 裴昌幸, 朱畅华, 刘丹 2008 57 5600]
[11] Mi J L, Wang F Q, Lin Q Q, Liang R S 2008 Chin. Phys. B 17 1178
[12] Hu H P, Wang J D, Huang Y X, Liu S H, Lu W 2010 Acta Phys. Sin. 59 287 (in Chinese) [胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍 2010 59 287]
[13] Zhou Y Y, Zhou X J, Tian P G, Wang Y J 2013 Chin. Phys. B 22 010305
[14] Zhao Y, Qi B, Ma X F, Lo H K, Qian L 2006 Phys. Rev. Lett. 96 070502
[15] Tobias S M, Henning W, Martin F, Rupert U, Felix T, Thomas S, Josep P, Zoran S, Christian K, John G R, Anton Z, Harald W 2007 Phys. Rev. Lett. 98 010504
[16] Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L, Guo G C 2008 Chin. Phys. Lett. 25 3547
[17] Wang Q, Chen W, Xavier G, Swillo M, Zhang T, Sauge S, Tengner M, Han Z F, Guo G C, Karlsson A 2008 Phys. Rev. Lett. 100 090501
[18] Wang X B 2007 Phys. Rev. A 75 052301
[19] Wang X B, Peng C Z, Zhang J, Yang L, Pan J W 2008 Phys. Rev. A 77 042311
[20] Wang S, Zhang S L, Li H W, Yin Z Q, Zhao Y B, Chen W, Han Z F, Guo G C 2009 Phys. Rev. A 79 062309
[21] Hu J Z, Wang X B 2010 Phys. Rev. A 82 012331
[22] Mauerer W, Silberhorn C 2007 Phys. Rev. A 75 050305
[23] Adachi Y, Yamamoto T, Koashi M, Imoto N 2007 Phys. Rev. Lett. 99 180503
[24] Curty M, Moroder T, Ma X F, Ltkenhaus N 2009 Opt. Lett. 34 3238
[25] Curty M, Ma X F, Qi B, Moroder T 2010 Phys. Rev. A 81 022310
[26] Zhou Y Y, Zhou X J 2011 Acta Phys. Sin. 60 100301 (in Chinese) [周媛媛, 周学军 2011 60 100301]
[27] Zhang S L, Zou X B, Li C F, Jin C H, Guo G C 2009 Chin. Sci. Bull. 54 1863
[28] Gottesman D, Lo H K, Ltkenhaus N, Preskill J 2004 Quantum Inf. Comput. 4 325
[29] Agarwal G S 1986 Phys. Rev. Lett. 57 827
[30] Ltkenhaus N 2000 Phys. Rev. A 61 052304
[31] Ma X F 2006 Phys. Rev. A 74 052325
[32] Townsend P D 1998 IEEE Photonics Technol. Lett. 10 1048
[33] Ribordy G, Gautier J D, Gisin N, Guinnard O, Zbinden H 1998 Electron. Lett. 34 2116
[34] Bourennane M, Gibson F, Karlsson A, Hening A, Jonsson P, Tsegaye T, Ljunggren D, Sundberg E1999 Opt. Express 4 383
[35] Gobby C, Yuan Z L, Shields A J 2004 Appl. Phys. Lett. 84 3762
[36] Zhou C, Bao W S, Fu X Q 2011 Sci. China 41 1136
[37] Zhang H Q, Zhou Y Y, Zhou X J, Tian P G 2013 Optoelectron. Lett. 9 389
-
[1] Bennett C H, Brassard G 1984 Processing of IEEE International Conference on Computers, Systems, and Signal Processing (New York: IEEE) p175
[2] Wang X B 2005 Phys. Rev. Lett. 94 230503
[3] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[4] Lo H K, Ma X F, Chen K 2005 Phys. Rev. Lett. 94 230504
[5] Ma X F, Qi B, Zhao Y, Lo H K 2005 Phys. Rev. A 72 012326
[6] Wang Q, Wang X B, Guo G C 2007 Phys. Rev. A 75 012312
[7] Yin Z Q, Han Z F, Sun F W, Guo G C 2007 Phys. Rev. A 76 014304
[8] Zhang S L, Zou X B, Li K, Jin C H, Guo G C 2007 Phys. Rev. A 76 044304
[9] Mi J L, Wang F Q, Lin Q Q, Liang R S, Liu S H 2008 Acta Phys. Sin. 57 678 (in Chinese) [米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪 2008 57 678]
[10] Quan D X, Pei C X, Zhu C H, Liu D 2008 Acta Phys. Sin. 57 5600 (in Chinese) [权东晓, 裴昌幸, 朱畅华, 刘丹 2008 57 5600]
[11] Mi J L, Wang F Q, Lin Q Q, Liang R S 2008 Chin. Phys. B 17 1178
[12] Hu H P, Wang J D, Huang Y X, Liu S H, Lu W 2010 Acta Phys. Sin. 59 287 (in Chinese) [胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍 2010 59 287]
[13] Zhou Y Y, Zhou X J, Tian P G, Wang Y J 2013 Chin. Phys. B 22 010305
[14] Zhao Y, Qi B, Ma X F, Lo H K, Qian L 2006 Phys. Rev. Lett. 96 070502
[15] Tobias S M, Henning W, Martin F, Rupert U, Felix T, Thomas S, Josep P, Zoran S, Christian K, John G R, Anton Z, Harald W 2007 Phys. Rev. Lett. 98 010504
[16] Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L, Guo G C 2008 Chin. Phys. Lett. 25 3547
[17] Wang Q, Chen W, Xavier G, Swillo M, Zhang T, Sauge S, Tengner M, Han Z F, Guo G C, Karlsson A 2008 Phys. Rev. Lett. 100 090501
[18] Wang X B 2007 Phys. Rev. A 75 052301
[19] Wang X B, Peng C Z, Zhang J, Yang L, Pan J W 2008 Phys. Rev. A 77 042311
[20] Wang S, Zhang S L, Li H W, Yin Z Q, Zhao Y B, Chen W, Han Z F, Guo G C 2009 Phys. Rev. A 79 062309
[21] Hu J Z, Wang X B 2010 Phys. Rev. A 82 012331
[22] Mauerer W, Silberhorn C 2007 Phys. Rev. A 75 050305
[23] Adachi Y, Yamamoto T, Koashi M, Imoto N 2007 Phys. Rev. Lett. 99 180503
[24] Curty M, Moroder T, Ma X F, Ltkenhaus N 2009 Opt. Lett. 34 3238
[25] Curty M, Ma X F, Qi B, Moroder T 2010 Phys. Rev. A 81 022310
[26] Zhou Y Y, Zhou X J 2011 Acta Phys. Sin. 60 100301 (in Chinese) [周媛媛, 周学军 2011 60 100301]
[27] Zhang S L, Zou X B, Li C F, Jin C H, Guo G C 2009 Chin. Sci. Bull. 54 1863
[28] Gottesman D, Lo H K, Ltkenhaus N, Preskill J 2004 Quantum Inf. Comput. 4 325
[29] Agarwal G S 1986 Phys. Rev. Lett. 57 827
[30] Ltkenhaus N 2000 Phys. Rev. A 61 052304
[31] Ma X F 2006 Phys. Rev. A 74 052325
[32] Townsend P D 1998 IEEE Photonics Technol. Lett. 10 1048
[33] Ribordy G, Gautier J D, Gisin N, Guinnard O, Zbinden H 1998 Electron. Lett. 34 2116
[34] Bourennane M, Gibson F, Karlsson A, Hening A, Jonsson P, Tsegaye T, Ljunggren D, Sundberg E1999 Opt. Express 4 383
[35] Gobby C, Yuan Z L, Shields A J 2004 Appl. Phys. Lett. 84 3762
[36] Zhou C, Bao W S, Fu X Q 2011 Sci. China 41 1136
[37] Zhang H Q, Zhou Y Y, Zhou X J, Tian P G 2013 Optoelectron. Lett. 9 389
Catalog
Metrics
- Abstract views: 6254
- PDF Downloads: 453
- Cited By: 0