Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on ultrafast spin dynamics of laser-induced spin valve structures

LU Wentian YAO Chunwei YAN Zhi YUAN Zhe

Citation:

Research on ultrafast spin dynamics of laser-induced spin valve structures

LU Wentian, YAO Chunwei, YAN Zhi, YUAN Zhe
cstr: 32037.14.aps.74.20241744
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The discovery of ultrafast demagnetization has provided a new means for generating ultrafast spin currents by using an ultrashort laser, potentially enabling faster manipulation of material magnetism. This has sparked research on the transport mechanisms of ultrafast spin currents. However, the basic processes are still poorly understood, especially the factors influencing interlayer spin transfer. In this work, a superdiffusive spin transport model is used to investigate the ultrafast spin transport mechanism in the Ni/Ru/Fe spin valve system, with a particular focus on how interlayer spin transfer affects the ultrafast magnetization dynamics of the ferromagnetic layer. First, by calculating the laser-induced magnetization dynamics of the Ni/Ru/Fe system under different magnetization alignments, the recent experimental findings are validated. Further analysis shows that reducing the thickness of the Ru spacer layer will significantly enhance the spin current intensity and increase the demagnetization difference in the Fe layer, confirming the key role of the hot electron spin current generated by the Ni layer in interlayer spin transport. In addition, the spin decay length of hot electron spin currents in the spacer Ru layer is determined to be approximately 0.5 nm. This work also shows that laser-induced transient magnetization enhancement can be achieved by adjusting the relative laser absorption in the films. These results provide theoretical support for ultrafast magnetic control of future spin valve structures and contribute to the development of spintronics in high-speed information processing and storage applications.
      Corresponding author: LU Wentian, wtlu@sxnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12404139) and the Natural Science Foundation of Shanxi Province, China (Grant No. 202203021212393).
    [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár V S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [2]

    Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323Google Scholar

    [3]

    Bader S D, Parkin S S P 2010 Annu. Rev. Condens. Matter Phys. 1 71Google Scholar

    [4]

    许涌, 张帆, 张晓强, 杜寅昌, 赵海慧, 聂天晓, 吴晓君, 赵巍胜 2022 69 200703Google Scholar

    Xu Y, Zhang F, Zhang X Q, Du Y C, Zhao H H, Nie T X, Wu X J, Zhao W S 2022 Acta Phys. Sin. 69 200703Google Scholar

    [5]

    Seifert T S, Cheng L, Wei Z X, Kampfrath T, Qi J B 2022 Appl. Phys. Lett. 120 180401Google Scholar

    [6]

    芦闻天, 袁喆 2022 中国科学: 物理学 力学 天文学 52 270007Google Scholar

    Lu W T, Yuan Z 2022 Sci. Sin. -Phys. Mech. Astron. 52 270007Google Scholar

    [7]

    杨旭, 冯红梅, 刘佳南, 张向群, 何为, 成昭华 2024 73 157501Google Scholar

    Yang X, Feng H M, Liu J N, Zhang X Q, He W, Cheng Z H 2024 Acta Phys. Sin. 73 157501Google Scholar

    [8]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731Google Scholar

    [9]

    李杭, 张新惠 2015 64 177503Google Scholar

    Li H, Zhang X H 2015 Acta Phys. Sin. 64 177503Google Scholar

    [10]

    Liu B, Xiao HJ, Weinelt M 2023 Sci. Adv. 9 eade0286Google Scholar

    [11]

    Jin Z M, Guo Y Y, Peng Y, Zhang Z Y, Pang J Y, Zhang Z Z, Liu F, Ye B, Jiang Y X, Ma G H, Zhang C, Balakin A V, Shkurinov A P, Zhu Y M, Zhuang S L 2023 Adv. Phys. Res. 2 2200049Google Scholar

    [12]

    Wang C T, Liu Y M 2020 Nano Converg. 7 35Google Scholar

    [13]

    Wu N, Zhang S J, Wang Y X, Meng S 2023 Prog. Surf. Sci. 98 100709Google Scholar

    [14]

    Wu X Q, Meng H, Zhang H Y, Xu N 2021 New J. Phys. 23 103007Google Scholar

    [15]

    Ghising P, Biswas C, Lee Y H 2023 Adv. Mater. 35 2209137Google Scholar

    [16]

    Gusev N A, Dgheparov D I, Pugach N G, Belotelov V I 2021 Appl. Phys. Lett. 118 232601Google Scholar

    [17]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [18]

    Stanciu C D, Hansteen F, Kimel A V, KirilyukA, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601Google Scholar

    [19]

    Malinowski G, Dalla Longa F, Rietjens J H H, Paluskar P V, Huijink R, Swagten H J M, Koopmans B 2008 Nat. Phys. 4 855Google Scholar

    [20]

    Rudolf D, La-O-Vorakiat C, Battiato M, Adam R, Shaw J M, Turgut E, Maldonado P, Mathias S, Grychtol P, Nembach H T, Silva T J, Aeschlimann M, Kapteyn H C, Murnane M M, Schneider C M, Oppeneer P M 2012 Nat. Commun. 3 1037Google Scholar

    [21]

    Turgut E, La-o-Vorakiat C, Shaw J M, Grychtol P, Nembach H T, Rudolf D, Adam R, Aeschlimann M, Schneider C M, Silva T J, Murnane M M, Kapteyn H C, Mathias S 2013 Phys. Rev. Lett. 110 197201Google Scholar

    [22]

    He W, Zhu T, Zhang X Q, Yang H T, Cheng Z H 2013 Sci. Rep. 3 2883Google Scholar

    [23]

    Ji B Y, Jin Z M, Wu G J, Li J G, Wan C H, Han X F, Zhang Z Z, Ma G H, Peng Y, Zhu Y M 2023 Appl. Phys. Lett. 122 111104Google Scholar

    [24]

    Igarashi J, Zhang W, Remy Q, Díaz E, Lin J X, Hohlfeld J, Hehn M, Mangin S, Gorchon J, Malinowski G 2023 Nat. Mater. 22 725Google Scholar

    [25]

    Schellekens A J, De Vries N, Lucassen J, Koopmans B 2014 Phys. Rev. B 90 104429Google Scholar

    [26]

    Eschenlohr A, Persichetti L, Kachel T, Gabureac M, Gambardella P, Stamm C 2017 J. Phys. : Condens. Matter 29 384002Google Scholar

    [27]

    Stamm C, Murer C, Wörnle M S, Reid A H, Higley D J, Wandel S F, Schlotter W F, Gambardella P 2020 J. Appl. Phys. 127 223902Google Scholar

    [28]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [29]

    Zhukov V P, Chulkov E V, Echenique P M 2005 Phys. Rev. B 72 155109Google Scholar

    [30]

    Zhukov V P, Chulkov E V, Echenique P M 2006 Phys. Rev. B 73 125105Google Scholar

    [31]

    Battiato M, Maldonado P, Oppeneer P M 2014 J. Appl. Phys. 115 172611Google Scholar

    [32]

    Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 024404Google Scholar

    [33]

    Lu W T, Yuan Z, Xu X H 2023 Sci. Chin. -Phys. Mech. Astron. 66 127511Google Scholar

    [34]

    Gorchon J, Mangin S, Hehn M, Malinowski G 2022 Appl. Phys. Lett. 121 012402Google Scholar

  • 图 1  飞秒激光脉冲诱导的Ni/Ru/Fe自旋阀结构中层间自旋输运示意图. 自旋极化热电子从Ni层通过Ru层转移至Fe层, 引起超快磁动力学. Ni层和Fe层的磁化方向可以为平行或反平行排列

    Figure 1.  Schematic of ultrafast interlayer spin transport in a Ni/Ru/Fe trilayer structure induced by femtosecond laser pulses. Spin-polarized hot electrons transfer from the Ni layer through the Ru spacer to the Fe layer, triggering ultrafast magnetic dynamics. The magnetization directions of the Ni and Fe layers can be either parallel or antiparallel.

    图 2  (a)—(f)计算得到激光激发后的磁动力学, Ni层和Fe层初始的磁化方向为平行(红线)和反平行(蓝线)排列. (a)与(b), (c)与(d), (e)与(f)分别为间隔层dRu = 2, 1.5, 1 nm厚的结果

    Figure 2.  (a)–(f) Calculated magnetic dynamics after laser excitation, with initial magnetization directions of the Ni and Fe layers aligned parallel (red line) and antiparallel (blue line). (a) and (b), (c) and (d), (e) and (f) show the results for spacer layer thicknesses of dRu = 2, 1.5, and 1 nm, respectively.

    图 3  (a) Ru层各位置自旋流js随时间的演化曲线, 以Ni/Ru界面处最大值进行归一化, 插图是以自旋流最大值对位置进行的指数拟合; (b)为图(a)中自旋流所对应的自旋极化率

    Figure 3.  (a) Time evolution of the spin current js at various positions in the Ru layer, normalized to the maximum at the Ni/Ru interface. The inset shows an exponential fit of the spin current maximum values as a function of position. (b) The corresponding spin polarization of the spin current in panel (a).

    图 4  计算得到不同初始磁化方向下Fe层的磁动力学行为, 其中, 飞秒激光仅激发 Ni 层产生非平衡热电子, 浅灰色阴影表示激光脉冲的时间分布

    Figure 4.  Calculated magnetic dynamics of Fe layer under different initial magnetization directions. The femtosecond laser excites only the Ni layer, generating nonequilibrium hot electrons. The light gray shading indicates the temporal profile of the laser pulse.

    Baidu
  • [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár V S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [2]

    Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323Google Scholar

    [3]

    Bader S D, Parkin S S P 2010 Annu. Rev. Condens. Matter Phys. 1 71Google Scholar

    [4]

    许涌, 张帆, 张晓强, 杜寅昌, 赵海慧, 聂天晓, 吴晓君, 赵巍胜 2022 69 200703Google Scholar

    Xu Y, Zhang F, Zhang X Q, Du Y C, Zhao H H, Nie T X, Wu X J, Zhao W S 2022 Acta Phys. Sin. 69 200703Google Scholar

    [5]

    Seifert T S, Cheng L, Wei Z X, Kampfrath T, Qi J B 2022 Appl. Phys. Lett. 120 180401Google Scholar

    [6]

    芦闻天, 袁喆 2022 中国科学: 物理学 力学 天文学 52 270007Google Scholar

    Lu W T, Yuan Z 2022 Sci. Sin. -Phys. Mech. Astron. 52 270007Google Scholar

    [7]

    杨旭, 冯红梅, 刘佳南, 张向群, 何为, 成昭华 2024 73 157501Google Scholar

    Yang X, Feng H M, Liu J N, Zhang X Q, He W, Cheng Z H 2024 Acta Phys. Sin. 73 157501Google Scholar

    [8]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731Google Scholar

    [9]

    李杭, 张新惠 2015 64 177503Google Scholar

    Li H, Zhang X H 2015 Acta Phys. Sin. 64 177503Google Scholar

    [10]

    Liu B, Xiao HJ, Weinelt M 2023 Sci. Adv. 9 eade0286Google Scholar

    [11]

    Jin Z M, Guo Y Y, Peng Y, Zhang Z Y, Pang J Y, Zhang Z Z, Liu F, Ye B, Jiang Y X, Ma G H, Zhang C, Balakin A V, Shkurinov A P, Zhu Y M, Zhuang S L 2023 Adv. Phys. Res. 2 2200049Google Scholar

    [12]

    Wang C T, Liu Y M 2020 Nano Converg. 7 35Google Scholar

    [13]

    Wu N, Zhang S J, Wang Y X, Meng S 2023 Prog. Surf. Sci. 98 100709Google Scholar

    [14]

    Wu X Q, Meng H, Zhang H Y, Xu N 2021 New J. Phys. 23 103007Google Scholar

    [15]

    Ghising P, Biswas C, Lee Y H 2023 Adv. Mater. 35 2209137Google Scholar

    [16]

    Gusev N A, Dgheparov D I, Pugach N G, Belotelov V I 2021 Appl. Phys. Lett. 118 232601Google Scholar

    [17]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [18]

    Stanciu C D, Hansteen F, Kimel A V, KirilyukA, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601Google Scholar

    [19]

    Malinowski G, Dalla Longa F, Rietjens J H H, Paluskar P V, Huijink R, Swagten H J M, Koopmans B 2008 Nat. Phys. 4 855Google Scholar

    [20]

    Rudolf D, La-O-Vorakiat C, Battiato M, Adam R, Shaw J M, Turgut E, Maldonado P, Mathias S, Grychtol P, Nembach H T, Silva T J, Aeschlimann M, Kapteyn H C, Murnane M M, Schneider C M, Oppeneer P M 2012 Nat. Commun. 3 1037Google Scholar

    [21]

    Turgut E, La-o-Vorakiat C, Shaw J M, Grychtol P, Nembach H T, Rudolf D, Adam R, Aeschlimann M, Schneider C M, Silva T J, Murnane M M, Kapteyn H C, Mathias S 2013 Phys. Rev. Lett. 110 197201Google Scholar

    [22]

    He W, Zhu T, Zhang X Q, Yang H T, Cheng Z H 2013 Sci. Rep. 3 2883Google Scholar

    [23]

    Ji B Y, Jin Z M, Wu G J, Li J G, Wan C H, Han X F, Zhang Z Z, Ma G H, Peng Y, Zhu Y M 2023 Appl. Phys. Lett. 122 111104Google Scholar

    [24]

    Igarashi J, Zhang W, Remy Q, Díaz E, Lin J X, Hohlfeld J, Hehn M, Mangin S, Gorchon J, Malinowski G 2023 Nat. Mater. 22 725Google Scholar

    [25]

    Schellekens A J, De Vries N, Lucassen J, Koopmans B 2014 Phys. Rev. B 90 104429Google Scholar

    [26]

    Eschenlohr A, Persichetti L, Kachel T, Gabureac M, Gambardella P, Stamm C 2017 J. Phys. : Condens. Matter 29 384002Google Scholar

    [27]

    Stamm C, Murer C, Wörnle M S, Reid A H, Higley D J, Wandel S F, Schlotter W F, Gambardella P 2020 J. Appl. Phys. 127 223902Google Scholar

    [28]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [29]

    Zhukov V P, Chulkov E V, Echenique P M 2005 Phys. Rev. B 72 155109Google Scholar

    [30]

    Zhukov V P, Chulkov E V, Echenique P M 2006 Phys. Rev. B 73 125105Google Scholar

    [31]

    Battiato M, Maldonado P, Oppeneer P M 2014 J. Appl. Phys. 115 172611Google Scholar

    [32]

    Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 024404Google Scholar

    [33]

    Lu W T, Yuan Z, Xu X H 2023 Sci. Chin. -Phys. Mech. Astron. 66 127511Google Scholar

    [34]

    Gorchon J, Mangin S, Hehn M, Malinowski G 2022 Appl. Phys. Lett. 121 012402Google Scholar

  • [1] ZHAO Chenrui, YANG Qianqian, JIAO Ju, TANG Zhenghua, QIN Minghui. Dynamics of ferrimagnetic domain wall driven by oscillating magnetic field. Acta Physica Sinica, 2025, 74(3): 038502. doi: 10.7498/aps.74.20241033
    [2] Xiong Yi-Nong, Wu Chuang-Wen, Ren Chuan-Tong, Meng De-Quan, Chen Shi-Wei, Liang Shi-Heng. Research progress of spin orbit torque of two-dimensional magnetic materials. Acta Physica Sinica, 2024, 73(1): 017502. doi: 10.7498/aps.73.20231244
    [3] Li Chun-Lei, Zheng Jun, Wang Xiao-Ming, Xu Yan. Spin-polarized transport properties in diluted-magnetic-semiconductor/semiconductor superlattices under light-field assisted. Acta Physica Sinica, 2023, 72(22): 227201. doi: 10.7498/aps.72.20230935
    [4] Niu Peng-Bin, Luo Hong-Gang. Interplay between Majorana fermion and impurity in thermal-driven transport model. Acta Physica Sinica, 2021, 70(11): 117401. doi: 10.7498/aps.70.20202241
    [5] Zhao Wei-Sheng, Huang Yang-Qi, Zhang Xue-Ying, Kang Wang, Lei Na, Zhang You-Guang. Overview and advances in skyrmionics. Acta Physica Sinica, 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [6] Sheng Yu, Zhang Nan, Wang Kai-You, Ma Xing-Qiao. Demonstration of four-state memory structure with perpendicular magnetic anisotropy by spin-orbit torque. Acta Physica Sinica, 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [7] Huang Yao-Qing, Hao Cheng-Hong, Zheng Ji-Ming, Ren Zhao-Yu. Si cluster based spintronics:a density functional theory study. Acta Physica Sinica, 2013, 62(8): 083601. doi: 10.7498/aps.62.083601
    [8] Wang Rui-Qin, Gong Jian, Wu Jian-Ying, Chen Jun. Time of spin-polarized tunneling through a symmetric double-barrier quantum well structure. Acta Physica Sinica, 2013, 62(8): 087303. doi: 10.7498/aps.62.087303
    [9] An Xing-Tao, Mu Hui-Ying, Xian Li-Fen, Liu Jian-Jun. Spin-polarized transport through double quantum-dot-array. Acta Physica Sinica, 2012, 61(15): 157201. doi: 10.7498/aps.61.157201
    [10] Gu Xiao-Fang, Qian Xuan, Ji Yang, Chen Lin, Zhao Jian-Hua. Observation of current-induced polarization in (Ga,Mn)As via magneto-optic Kerr measurement. Acta Physica Sinica, 2012, 61(3): 037801. doi: 10.7498/aps.61.037801
    [11] Wang Hui, Hu Gui-Chao, Ren Jun-Feng. Effect of disturbance on spin polarized transport through an organic ferromagnetic device. Acta Physica Sinica, 2011, 60(12): 127201. doi: 10.7498/aps.60.127201
    [12] Xiao Xian-Bo, Li Xiao-Mao, Chen Yu-Guang. Spin-polarized transport in quantum waveguide systems with attached stubs. Acta Physica Sinica, 2009, 58(11): 7909-7913. doi: 10.7498/aps.58.7909
    [13] Yao Jian-Ming, Yang Chong. Spin-dependent transport through a multi-electrodes controlled by an Aharonov-Bohm ring. Acta Physica Sinica, 2009, 58(5): 3390-3396. doi: 10.7498/aps.58.3390
    [14] Zheng Xiao-Hong, Dai Zhen-Xiang, Wang Xian-Long, Zeng Zhi. Effects of B and N doping on spin polarized transport in graphene nanoribbons. Acta Physica Sinica, 2009, 58(13): 259-S265. doi: 10.7498/aps.58.259
    [15] Dong Zheng-Chao. Spin-polarized transport in ferromagnetic semiconductor/ferromagnetic d-wave superconductor tunnel junction. Acta Physica Sinica, 2008, 57(9): 5937-5943. doi: 10.7498/aps.57.5937
    [16] Xiao Xian-Bo, Li Xiao-Mao, Zhou Guang-Hui. Spin polarized transport properties for quantum wire irradiated by THz electromagnetic wave. Acta Physica Sinica, 2007, 56(3): 1649-1654. doi: 10.7498/aps.56.1649
    [17] Ren Jun-Feng, Zhang Yu-Bin, Xie Shi-Jie. Current spin polarization in ferromagnetic/organic semiconductor/ferromagnetic system. Acta Physica Sinica, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [18] Ren Jun-Feng, Fu Ji-Yong, Liu De-Sheng, Xie Shi-Jie. Diffusion theory of spin injection into organic polymers*. Acta Physica Sinica, 2004, 53(11): 3814-3817. doi: 10.7498/aps.53.3814
    [19] Sun Feng-Wei, Deng Li, Shou Qian, Liu Lu-Ning, Wen Jin-Hui, Lai Tian-Shu, Lin Wei-Zhu. Femtosecond spectral studies of electron spin injection and relaxation in AlGaAs / GaAs MQW. Acta Physica Sinica, 2004, 53(9): 3196-3199. doi: 10.7498/aps.53.3196
    [20] Qin Jian-Hua, Guo Yong, Chen Xin-Yi, Gu Bing-Lin. A study on spin-polarized transport properties in magnetic-electric barrier st ructures. Acta Physica Sinica, 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
Metrics
  • Abstract views:  1060
  • PDF Downloads:  126
  • Cited By: 0
Publishing process
  • Received Date:  19 December 2024
  • Accepted Date:  14 January 2025
  • Available Online:  17 January 2025
  • Published Online:  20 March 2025

/

返回文章
返回
Baidu
map