搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于弹性拓扑绝缘体的多频段谷锁定拓扑输运研究

林建华 毕仁贵 唐诗瑶 孔鹏 邓科

引用本文:
Citation:

基于弹性拓扑绝缘体的多频段谷锁定拓扑输运研究

林建华, 毕仁贵, 唐诗瑶, 孔鹏, 邓科

Valley-locked waveguide state topological transport of multiband out-of-plane body elastic waves

Lin Jian-hua, Bi Reng-gui, Tang Shi-yao, Kong Peng, Deng Ke
PDF
导出引用
  • 自拓扑绝缘体概念从量子波领域拓展到经典波领域以来,谷霍尔拓扑绝缘体因其新奇的物理特性、丰富的波调控方式等优势,引起了大量的关注,相关研究得到了快速发展。本文针对传统谷拓扑绝缘体中边缘态输运容量小、结构不灵活等缺陷,基于谷锁定原理设计了一种拓扑波导结构。该结构的原始构形具有矩形脉连接的蜂窝晶格,利用等效结构参数方法计算了模型的能带结构、输运特性,发现其布里渊区角点K处有3个狄拉克点。通过改变结构参数打破体系的空间反演对称性,实现了3个频段的弹性波模式的拓扑相变;在两个拓扑绝缘体中间插入具有狄拉克点的声子晶体组成拓扑异质结构,展示了该结构的拓扑波导态具有多频段、宽度可调、强鲁棒性等优点。基于该结构设计了能量分束器、能量汇聚器,实现了对弹性波的多种灵活操控。此研究不仅丰富了拓扑声学,所设计的拓扑异质结构在多频段通讯与信息处理方面具有潜在的应用前景。
    Since the expansion of the topological insulator concept from the field of quantum waves to the field of elastic waves, the research related to the elastic system valley hall insulator has been developed rapidly because of its novel physical properties, rich designability for wave modulation and simple implementation conditions. To address the limitations of small energy and inflexible structure of the edge-state transmission of valley hall insulators in general, a topological waveguide heterostructure is designed based on the valley locking principle. The original configuration of the structure has a vein-connected honeycomb lattice. Using the equivalent structural parameter method to calculate the energy band structure and transmission characteristics of the model, it is found that there are three Dirac points at the corner points K of the Brillouin zone, and the spatial inversion symmetry of the system can be broken by changing the structural parameters, so as to realize the topological phase transition of the out-of-plane body elastic mode in three frequency bands; between two topological insulators The topological heterogeneous structure is formed by superimposing Dirac point phonon crystals between two topological insulators, and the topological waveguide state is multiband, tunable, and robust, etc. The structure is used to design energy splitters and energy convergers to achieve flexible manipulation of elastic waves. This study enriches topological acoustics, and the designed multi-band elastic topological insulator has potential applications in multi-band communication and information processing.
  • [1]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [2]

    Moore J E 2010 Nature 464 194

    [3]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124

    [4]

    Miniaci M, Pal R, Morvan B, Ruzzene M 2018 Phys. Rev. X 8 031074

    [5]

    Zhou W J, Wu B, Su Y, Liu D Y, Chen W Q, Bao R H 2021 Mech. Adv. Mater. Struct. 28 221

    [6]

    Zeng Y, Zhang S Y, Zhou H T, Wang Y F, Cao L Y, Zhu Y F, Du Q J, Assouar B, Wang Y S 2021 Mater. Des. 208 109906

    [7]

    Wang K, Zhou J X, Chang Y P, Ouyang H J, Xu D L, Yang Y 2020 Nonlinear Dyn. 101 755

    [8]

    Ding Y, Peng Y, Zhu Y, Fan X, Yang J, Liang B, Zhu X, Wan X, Cheng J 2019 Phys. Rev. Lett. 122 014302

    [9]

    Yang Z J, Gao F, Shi X H, Lin X, Gao Z, Chong Y D, Zhang B L 2015 Phys. Rev. Lett. 114 114301

    [10]

    Wang P, Lu L, Bertoldi K 2015 Phys. Rev. Lett. 115 104302

    [11]

    Gao N, Qu S C, Si L, Wang J, Chen W Q 2021 Appl. Phys. Lett. 118063502

    [12]

    Chen Y F, Meng F, Huang X D 2021 Mech. Syst. Signal Process. 146 107054

    [13]

    Huo S Y, Chen J J, Huang H B, Wei Y J, Tan Z H, Feng L Y, Xie X P 2021 Mech. Syst. Signal Process. 154 107543

    [14]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2017 Nat. Phys. 13 369

    [15]

    Brendel C, Peano V, Painter O, Marquardt F 2018 Phys. Rev. B 97 020102

    [16]

    Lin J, Qi Y, He Z 2024Appl. Phys. Lett.124082202

    [17]

    Yi-He W, Zhi-Wang Z, Ying 2019Acta Phys. Sin. 68 264-271(in Chinese) [王一鹤,张志旺,程营2019. 68264-271]

    [18]

    Ding J, Yong G, Shou-Qi Y, Hong-Xiang S 2019 Acta Phys. Sin. 68224301 (in Chinese) [贾鼎, 葛勇, 袁寿其, 孙宏祥2019 68 224301]

    [19]

    Zhou-Fu Z, Jian-Fei Y, Ji-Hong W, Dian-Long Y 2020 Acta Phys. Sin. 69 279(in Chinese) [郑周甫,尹剑飞, 温激鸿, 郁殿龙2020 69 279]

    [20]

    Jiang Z, Zhou Y Y, Zheng S J, Liu J T, Xia B Z 2023 Int. J. Mech. Sci. 255 108464

    [21]

    Huo S, Chen J, Huang H, 2017Sci. Rep. 7 10335

    [22]

    Yang Z Z, Li X, Peng Y Y, 2020, Phys. Rev. Lett. 125 255502.

    [23]

    Xu G G, Sun X W, Wen X D 2023J Appl Phys. 133 095110

    [24]

    Wang M D, Zhou W Y, Bi L, Qiu C Y, Ke M Z, Liu Z Y 2020 Nat. Commun. 11 3000

    [25]

    Huo S Y, Xie G H, Qiu S J, Gong X C, Fan S Z, Fu C M, Li Z Y 2022 Mech. Adv. Mater. Struct. 29 7772

    [26]

    Wang J Q, Zhang Z D, Yu S Y, Ge H, Liu K F, Wu T, Sun X C, Liu L, Chen H Y, He C 2022 Nat. Commun. 13 1324

    [27]

    Liu S, Deng W Y, Huang X Q, Lu J Y, Ke M Z, Liu Z Y 2022 Phys. Rev. Appl. 18 034066

    [28]

    Chen Y, Guo Z, Liu Y 2024J. Phys. D: Appl. Phys.57 465306.

    [29]

    Wang Y F 2015Ph. D. Dissertation (Beijin: Beijinjiaotong University) (in Chinese) [王艳锋2015 博士论文(北京: 北京交通大学) ]

    [30]

    Lai, Yun, Zhao-Qing Zhang.2003Appl. Phys. Lett. 83 3900-3902

    [31]

    Mei J, Liu Z, Shi J 2003Phys. Rev.B.67 245107.

  • [1] 高慧芬, 周小芳, 黄学勤. 二维声子晶体中Zak相位诱导的界面态.  , doi: 10.7498/aps.71.20211642
    [2] 李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科. 双表面周期性弹性声子晶体板中的谷拓扑态.  , doi: 10.7498/aps.71.20221292
    [3] 骆全斌, 黄学勤, 邓伟胤, 吴迎, 陆久阳, 刘正猷. 声子晶体板中的第二类狄拉克点和边缘传输.  , doi: 10.7498/aps.70.20210712
    [4] 高慧芬, 周小芳, 黄学勤. 二维声子晶体中Zak相位诱导的界面态.  , doi: 10.7498/aps.70.20211642
    [5] 谭自豪, 孙小伟, 宋婷, 温晓东, 刘禧萱, 刘子江. 球形复合柱表面波声子晶体的带隙特性仿真.  , doi: 10.7498/aps.70.20210165
    [6] 郑周甫, 尹剑飞, 温激鸿, 郁殿龙. 基于声子晶体板的弹性波拓扑保护边界态.  , doi: 10.7498/aps.69.20200542
    [7] 耿治国, 彭玉桂, 沈亚西, 赵德刚, 祝雪丰. 手性声子晶体中拓扑声传输.  , doi: 10.7498/aps.68.20191007
    [8] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体.  , doi: 10.7498/aps.68.20190951
    [9] 王健, 吴世巧, 梅军. 二维声子晶体中简单旋转操作导致的拓扑相变.  , doi: 10.7498/aps.66.224301
    [10] 陈泽国, 吴莹. 声子晶体中的多重拓扑相.  , doi: 10.7498/aps.66.227804
    [11] 侯丽娜, 侯志林, 傅秀军. 局域共振型声子晶体中的缺陷态研究.  , doi: 10.7498/aps.63.034305
    [12] 程聪, 吴福根, 张欣, 姚源卫. 基于局域共振单元实现声子晶体低频多通道滤波.  , doi: 10.7498/aps.63.024301
    [13] 刘启能, 刘沁. 固-固无限周期声子晶体中SH波全反射隧穿的谐振理论.  , doi: 10.7498/aps.62.044301
    [14] 丁红星, 沈中华, 李加, 祝雪丰, 倪晓武. 复合兰姆波声子晶体中超宽部分禁带.  , doi: 10.7498/aps.61.196301
    [15] 刘启能. 一维固-固结构圆柱声子晶体中弹性波的传输特性.  , doi: 10.7498/aps.60.034301
    [16] 蔡 力, 韩小云, 温熙森. 长波条件下二维声子晶体中的弹性波传播及各向异性.  , doi: 10.7498/aps.57.1746
    [17] 蔡 力, 韩小云. 二维声子晶体带结构的多散射分析及解耦模式.  , doi: 10.7498/aps.55.5866
    [18] 李晓春, 易秀英, 肖清武, 梁宏宇. 三组元声子晶体中的缺陷态.  , doi: 10.7498/aps.55.2300
    [19] 温激鸿, 王 刚, 刘耀宗, 郁殿龙. 基于集中质量法的一维声子晶体弹性波带隙计算.  , doi: 10.7498/aps.53.3384
    [20] 齐共金, 杨盛良, 白书欣, 赵 恂. 基于平面波算法的二维声子晶体带结构的研究.  , doi: 10.7498/aps.52.668
计量
  • 文章访问数:  85
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-14

/

返回文章
返回
Baidu
map