Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Type-II Dirac points and edge transports in phononic crystal plates

Luo Quan-Bin Huang Xue-Qin Deng Wei-Yin Wu Ying Lu Jiu-Yang Liu Zheng-You

Citation:

Type-II Dirac points and edge transports in phononic crystal plates

Luo Quan-Bin, Huang Xue-Qin, Deng Wei-Yin, Wu Ying, Lu Jiu-Yang, Liu Zheng-You
PDF
HTML
Get Citation
  • The accidentally degenerate type-II Dirac points in sonic crystal has been realized recently. However, elastic phononic crystals with type-II Dirac points have not yet been explored. In this work, we design a two-dimensional phononic crystal plate in square lattice with type-II Dirac points for elastic waves. The type-II Dirac points, different from the type-I counterparts, have the tiled dispersions and thus the iso-frequency contours become crossed lines. By tuning structures to break the mirror symmetry, the degeneracies of the type-II Dirac points are lifted, leading to a band inversion. In order to have a further explanation, we also calculate the Berry curvatures of phononic crystals with opposite structure parameters, and it turns out that these two crystals hold opposite signs around the valley. The phononic crystal plates before and after the band inversion belong to different topological valley phases, whose direct consequence is that the topologically protected gapless interface states exist between two distinct topological phases. Topologically protected interface states are found by calculating the projected band structures of a supercell that contains two kinds of interfaces between two topological phases. Robustness of the interface transport is verified by comparing the transmission rate for perfect interface with that for defective interface. Moreover, owing to the special stress field distributions of the elastic plate waves, the boundaries of a single phononic crystal phase can similarly host the gapless boundary states, which is found by calculating the projected band structures of a supercell with a single phase, thus having two free boundaries on the edges. This paper extends the two-dimensional Dirac points and valley states in graphene-like systems to the type-II cases, and obtains in the same structure the gapless interface and boundary propagations. Owing to the simple design scheme of the structure, the phononic crystal plates can be fabricated and scaled to a small size. Our system provides a feasible way of constructing high-frequency elastic wave devices.
      Corresponding author: Wu Ying, phwuying@scut.edu.cn ; Lu Jiu-Yang, phjylu@scut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11890701), the Guangdong Basic and Applied Basic Research Foundation, China (Grant Nos. 2019B151502012, 2021B1515020086, 2021A1515010347), and the China Postdoctoral Science Foundation (Grant No. 2020M672615)
    [1]

    孙其诚, 何程, 卢明辉, 陈延峰 2017 66 224203Google Scholar

    Sun Q C, He C, Lu M H, Chen Y F 2017 Acta Phys. Sin. 66 224203Google Scholar

    [2]

    Fleury R, Khanikaev A B, Alu A 2016 Nat. Commun. 7 11477Google Scholar

    [3]

    He C, Li Z, Ni X, Sun X C, Yu S Y, Lu M H, Liu X P, Chen Y F 2016 Appl. Phys. Lett. 108 031904Google Scholar

    [4]

    Deng W Y, Lu J Y, Li F, Huang X Q, Yan M, Ma J H, Liu Z Y 2019 Nat. Commun. 10 1769Google Scholar

    [5]

    Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H, Zhu X F 2016 Nat. Commun. 7 13368Google Scholar

    [6]

    Deng W Y, Huang X Q, Lu J Y, Li F, Ma J H, Chen S Q, Liu Z Y 2020 Sci. China-Phys. Mech. Astron. 63 287032Google Scholar

    [7]

    Zhang X J, Xiao M, Cheng Y, Lu M H, Christensen J 2018 Commun. Phys. 1 97Google Scholar

    [8]

    Huang X Q, Deng W Y, Li F, Lu J Y, Liu Z Y 2020 Phys. Rev. Lett. 124 206802Google Scholar

    [9]

    Wei Q, Zhang X W, Deng W Y, Lu J Y, Huang X Q, Yan M, Chen G, Liu, Z Y, Jia S T 2021 Nat. Mater. 20 812Google Scholar

    [10]

    Xue H R, Yang Y H, Gao F, Chong Y D, Zhang B L 2019 Nat. Mater. 18 108Google Scholar

    [11]

    Yang Y T, Lu J Y, Yan M, Huang X Q, Deng W Y, Liu Z Y 2021 Phys. Rev. Lett. 126 156801Google Scholar

    [12]

    Yang Z J, Gao F, Shi X H, Lin X, Gao Z, Chong Y D, Zhang B L 2015 Phys. Rev. Lett. 114 114301Google Scholar

    [13]

    Ni X, He C, Sun X C, Liu X P, Lu M H, Feng L, Chen Y F 2015 New J. Phys. 17 053016Google Scholar

    [14]

    Khanikaev A B, Fleury R, Mousavi S H, Alu A 2015 Nat. Commun. 6 8260Google Scholar

    [15]

    贾鼎, 葛勇, 袁寿其, 孙宏祥 2019 68 224301Google Scholar

    Jia D, Ge Y, Yuan S Q, Sun H X 2019 Acta Phys. Sin. 68 224301Google Scholar

    [16]

    Ding Y J, Peng Y G, Zhu Y F, Fan X D, Yang J, Liang B, Zhu X F, Wan X G, Cheng J C 2019 Phys. Rev. Lett. 122 014302Google Scholar

    [17]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124Google Scholar

    [18]

    Mousavi S H, Khanikaev A B, Wang Z 2015 Nat. Commun. 6 8682Google Scholar

    [19]

    王健, 吴世巧, 梅军 2017 66 224301Google Scholar

    Wang J, Wu S Q, Mei J 2017 Acta Phys. Sin. 66 224301Google Scholar

    [20]

    Lu J Y, Qiu C Y, Ke M Z, Liu Z Y 2016 Phys. Rev. Lett. 116 093901Google Scholar

    [21]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2017 Nat. Phys. 13 369Google Scholar

    [22]

    Deng W Y, Huang X Q, Lu J Y, Peri V, Li F, Huber S D, Liu Z Y 2020 Nat. Commun. 11 3227Google Scholar

    [23]

    Peng Y G, Li Y, Shen Y X, Geng Z G, Zhu J, Qiu C W, Zhu X F 2019 Phys. Rev. Research. 1 033149Google Scholar

    [24]

    Fan H Y, Xia B Z, Tong L, Zheng S J, Yu D J 2019 Phys. Rev. Lett. 122 204301Google Scholar

    [25]

    Wang H X, Lin Z K, Jiang B, Guo G Y, Jiang J H 2020 Phys. Rev. Lett. 125 146401Google Scholar

    [26]

    Süsstrunk R, Huber S D 2015 Science 349 47

    [27]

    耿治国, 彭玉桂, 沈亚西, 赵德刚, 祝雪丰 2019 68 227802Google Scholar

    Geng Z G, Peng Y G, Shen Y X, Zhao D G, Zhu X F 2019 Acta Phys. Sin. 68 227802Google Scholar

    [28]

    Wallace P R 1947 Phys. Rev. 71 622Google Scholar

    [29]

    Yan M Z, Huang H Q, Zhang K N, et al. 2017 Nat. Commun. 8 257Google Scholar

    [30]

    Sadeddine S, Enriquez H, Bendounan A, Das P K, Voborni I, Kara A, Mayne A J, Sirotti F, Dujardin G, Oughaddou H 2017 Sci. Rep. 7 44400Google Scholar

    [31]

    Chang T R, Xu S Y, Sanchez D S, et al. 2017 Phys. Rev. Lett. 119 026404Google Scholar

    [32]

    Das S, Amit, Sirohi A, Yadav L, Gayen S, Singh Y, Sheet G 2018 Phys. Rev. B 97 014523Google Scholar

    [33]

    Liang T, Gibson Q, Ali M N, Liu M H, Cava R J, Ong N P 2015 Nat. Mater. 14 280Google Scholar

    [34]

    Politano A, Chiarello G, Ghosh B, Sadhukhan K, Kuo C N, Lue C S, Pellegrini V, Agarwal A 2018 Phys. Rev. Lett. 121 086804Google Scholar

    [35]

    Wu X X, Li X, Zhang R Y, et al. 2020 Phys. Rev. Lett. 124 075501Google Scholar

    [36]

    Horio M, Matt C E, Kramer K, et al. 2018 Nat. Commun. 9 3252Google Scholar

    [37]

    Fukui T, Hatsugai Y, Suzuki H 2005 J. Phys. Soc. Japan 74 1674Google Scholar

    [38]

    Ezawa M 2013 Phys. Rev. B 88 161406Google Scholar

    [39]

    Zhang F, MacDonald A H, Mele E J 2013 Proc. Natl. Acad. Sci. 110 10546Google Scholar

  • 图 1  具有第二类狄拉克点的声子晶体板 (a)正方晶格声子晶体板和单胞结构示意图; (b)声子晶体沿布里渊区高对称线的能带结构, 插图为第一布里渊区; (c)第二类狄拉克点附近的能带结构, 绿色平面为简并点所在的等频面

    Figure 1.  Phononic crystal plates with type-II Dirac point. (a) Schematics of the phononic crystal plates and the unit cell. (b) Dispersions of the phononic crystal plates along the high-symmetry lines. Inset: the first Brillouin zone. (c) Dispersions around the type-II Dirac point. Green plane shows the isofrequency plane at the frequency of the type-II Dirac point.

    图 2  镜面对称破缺以及拓扑相变 (a)镜面对称破缺声子晶体板($ \Delta h=2.5\;\;\mathrm{m}\mathrm{m} $)的能带结构, 插图为原胞示意图; (b) $ D $点本征频率随$ \Delta h $的变化关系, 插图给出了$ \Delta h=0 $前后上下能带对应的本征模态; (c), (d)分别为$ \Delta h=\pm 2.5\;\;\mathrm{m}\mathrm{m} $时第一条能带的贝里曲率分布

    Figure 2.  Breaking of mirror symmetry and topological phase transition: (a) Dispersions of the phononic crystal plate with $ \Delta h=2.5\;\mathrm{m}\mathrm{m} $, where the inset is the diagram of unit cell; (b) eigenfrequencies at $ D $ point versus $ \Delta h $, where the insets show eigenmodes before and after the band inversion; (c), (d) Berry curvature distributions of the first bands for phononic crystal plates with $ \Delta h=2.5\;\mathrm{m}\mathrm{m} $ and $ \Delta h=-2.5\;\mathrm{m}\mathrm{m} $, respectively.

    图 3  声子晶体板的界面态传输 (a)在y方向上依次由ABA拼成的声子晶体板; (b) ABA结构的投影能带; (c)分别表示(b)中蓝色和红色五角星标记的位移本征场分布, 其中形变表示总位移, 彩色条表示z方向上的位移, 绿色虚线为边界所在位置; (d)含缺陷的BA界面态传输, 绿线为边界位置, 绿色五角星为位移沿z方向的偏振点源, 激发频率$ 22.3\;\mathrm{k}\mathrm{H}\mathrm{z} $; (e)蓝色点线和红色点线分别是无缺陷和存在缺陷时的两种边界态传输率; (f) AB和BA界面态的剪切应力分布

    Figure 3.  Interface state transports of phononic crystal plates. (a) Schematic of sandwich structure ABA successively consisting phononic crystal plates of phases A and B along the y direction. (b) Projected dispersions of the sandwich structure ABA. (c) Displacement field eigenmodes marked by the blue and red star in panel (b), where the deformation is the total displacement. The color bar is the displacement in z direction, and the green dotted line is the boundary position. (d) Interface state transports along the BA interface with defect (denoted by green line). Green star denotes the point source polarized along the z direction and operating at $ f=22.3\;\mathrm{k}\mathrm{H}\mathrm{z} $. (e) Transmissions for perfect and defective interfaces. (f) Shear stress distributions corresponding to AB and BA interface states.

    图 4  声子晶体板的边界态传输 (a)声子晶体B在自由边界下的投影能带, 插图为边界态位移本征场分布(仅存在于下边界); (b), (c)分别是无缺陷和存在缺陷时两种沿自由边界传播的边界态传输; (d)蓝色点线和红色点线分别是对应(b)和(c)情形的透射率

    Figure 4.  Boundary state transports of phononic crystal plates. (a) Projected dispersions of phononic crystal plates of phase B. Inset: the displacement field eigenmodes of the boundary state, locating at the bottom free boundary. (b), (c) Boundary state transports along the free boundaries without and with defect. (d) Transmissions for two distinct boundaries corresponding to (b) and (c).

    Baidu
  • [1]

    孙其诚, 何程, 卢明辉, 陈延峰 2017 66 224203Google Scholar

    Sun Q C, He C, Lu M H, Chen Y F 2017 Acta Phys. Sin. 66 224203Google Scholar

    [2]

    Fleury R, Khanikaev A B, Alu A 2016 Nat. Commun. 7 11477Google Scholar

    [3]

    He C, Li Z, Ni X, Sun X C, Yu S Y, Lu M H, Liu X P, Chen Y F 2016 Appl. Phys. Lett. 108 031904Google Scholar

    [4]

    Deng W Y, Lu J Y, Li F, Huang X Q, Yan M, Ma J H, Liu Z Y 2019 Nat. Commun. 10 1769Google Scholar

    [5]

    Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H, Zhu X F 2016 Nat. Commun. 7 13368Google Scholar

    [6]

    Deng W Y, Huang X Q, Lu J Y, Li F, Ma J H, Chen S Q, Liu Z Y 2020 Sci. China-Phys. Mech. Astron. 63 287032Google Scholar

    [7]

    Zhang X J, Xiao M, Cheng Y, Lu M H, Christensen J 2018 Commun. Phys. 1 97Google Scholar

    [8]

    Huang X Q, Deng W Y, Li F, Lu J Y, Liu Z Y 2020 Phys. Rev. Lett. 124 206802Google Scholar

    [9]

    Wei Q, Zhang X W, Deng W Y, Lu J Y, Huang X Q, Yan M, Chen G, Liu, Z Y, Jia S T 2021 Nat. Mater. 20 812Google Scholar

    [10]

    Xue H R, Yang Y H, Gao F, Chong Y D, Zhang B L 2019 Nat. Mater. 18 108Google Scholar

    [11]

    Yang Y T, Lu J Y, Yan M, Huang X Q, Deng W Y, Liu Z Y 2021 Phys. Rev. Lett. 126 156801Google Scholar

    [12]

    Yang Z J, Gao F, Shi X H, Lin X, Gao Z, Chong Y D, Zhang B L 2015 Phys. Rev. Lett. 114 114301Google Scholar

    [13]

    Ni X, He C, Sun X C, Liu X P, Lu M H, Feng L, Chen Y F 2015 New J. Phys. 17 053016Google Scholar

    [14]

    Khanikaev A B, Fleury R, Mousavi S H, Alu A 2015 Nat. Commun. 6 8260Google Scholar

    [15]

    贾鼎, 葛勇, 袁寿其, 孙宏祥 2019 68 224301Google Scholar

    Jia D, Ge Y, Yuan S Q, Sun H X 2019 Acta Phys. Sin. 68 224301Google Scholar

    [16]

    Ding Y J, Peng Y G, Zhu Y F, Fan X D, Yang J, Liang B, Zhu X F, Wan X G, Cheng J C 2019 Phys. Rev. Lett. 122 014302Google Scholar

    [17]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124Google Scholar

    [18]

    Mousavi S H, Khanikaev A B, Wang Z 2015 Nat. Commun. 6 8682Google Scholar

    [19]

    王健, 吴世巧, 梅军 2017 66 224301Google Scholar

    Wang J, Wu S Q, Mei J 2017 Acta Phys. Sin. 66 224301Google Scholar

    [20]

    Lu J Y, Qiu C Y, Ke M Z, Liu Z Y 2016 Phys. Rev. Lett. 116 093901Google Scholar

    [21]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2017 Nat. Phys. 13 369Google Scholar

    [22]

    Deng W Y, Huang X Q, Lu J Y, Peri V, Li F, Huber S D, Liu Z Y 2020 Nat. Commun. 11 3227Google Scholar

    [23]

    Peng Y G, Li Y, Shen Y X, Geng Z G, Zhu J, Qiu C W, Zhu X F 2019 Phys. Rev. Research. 1 033149Google Scholar

    [24]

    Fan H Y, Xia B Z, Tong L, Zheng S J, Yu D J 2019 Phys. Rev. Lett. 122 204301Google Scholar

    [25]

    Wang H X, Lin Z K, Jiang B, Guo G Y, Jiang J H 2020 Phys. Rev. Lett. 125 146401Google Scholar

    [26]

    Süsstrunk R, Huber S D 2015 Science 349 47

    [27]

    耿治国, 彭玉桂, 沈亚西, 赵德刚, 祝雪丰 2019 68 227802Google Scholar

    Geng Z G, Peng Y G, Shen Y X, Zhao D G, Zhu X F 2019 Acta Phys. Sin. 68 227802Google Scholar

    [28]

    Wallace P R 1947 Phys. Rev. 71 622Google Scholar

    [29]

    Yan M Z, Huang H Q, Zhang K N, et al. 2017 Nat. Commun. 8 257Google Scholar

    [30]

    Sadeddine S, Enriquez H, Bendounan A, Das P K, Voborni I, Kara A, Mayne A J, Sirotti F, Dujardin G, Oughaddou H 2017 Sci. Rep. 7 44400Google Scholar

    [31]

    Chang T R, Xu S Y, Sanchez D S, et al. 2017 Phys. Rev. Lett. 119 026404Google Scholar

    [32]

    Das S, Amit, Sirohi A, Yadav L, Gayen S, Singh Y, Sheet G 2018 Phys. Rev. B 97 014523Google Scholar

    [33]

    Liang T, Gibson Q, Ali M N, Liu M H, Cava R J, Ong N P 2015 Nat. Mater. 14 280Google Scholar

    [34]

    Politano A, Chiarello G, Ghosh B, Sadhukhan K, Kuo C N, Lue C S, Pellegrini V, Agarwal A 2018 Phys. Rev. Lett. 121 086804Google Scholar

    [35]

    Wu X X, Li X, Zhang R Y, et al. 2020 Phys. Rev. Lett. 124 075501Google Scholar

    [36]

    Horio M, Matt C E, Kramer K, et al. 2018 Nat. Commun. 9 3252Google Scholar

    [37]

    Fukui T, Hatsugai Y, Suzuki H 2005 J. Phys. Soc. Japan 74 1674Google Scholar

    [38]

    Ezawa M 2013 Phys. Rev. B 88 161406Google Scholar

    [39]

    Zhang F, MacDonald A H, Mele E J 2013 Proc. Natl. Acad. Sci. 110 10546Google Scholar

  • [1] Wang Jun, Cai Fei-Yan, Zhang Ru-Jun, Li Yong-Chuan, Zhou Wei, Li Fei, Deng Ke, Zheng Hai-Rong. Acoustic manipulation of microparticles using a piezoelectric phononic crystal plate. Acta Physica Sinica, 2024, 73(7): 074302. doi: 10.7498/aps.73.20231886
    [2] Ji Yu-Xuan, Zhang Ming-Kai, Li Yan. Dual-band semi-Dirac cones in two-dimensional photonic crystal and zero-index material. Acta Physica Sinica, 2024, 73(18): 181101. doi: 10.7498/aps.73.20240800
    [3] Wang Yan-Ping, Cai Fei-Yan, Li Fei, Zhang Ru-Jun, Li Yong-Chuan, Wang Jin-Ping, Zhang Xin, Zheng Hai-Rong. Acoustic manipulation of microparticles using a two-dimensional phononic crystal plate. Acta Physica Sinica, 2023, 72(14): 144207. doi: 10.7498/aps.72.20230099
    [4] Li Yin-Ming, Kong Peng, Bi Ren-Gui, He Zhao-Jian, Deng Ke. Valley topological states in double-surface periodic elastic phonon crystal plates. Acta Physica Sinica, 2022, 71(24): 244302. doi: 10.7498/aps.71.20221292
    [5] Zheng Zhou-Fu, Yin Jian-Fei, Wen Ji-Hong, Yu Dian-Long. Topologically protected edge states of elastic waves in phononic crystal plates. Acta Physica Sinica, 2020, 69(15): 156201. doi: 10.7498/aps.69.20200542
    [6] Fang Yun-Tuan, Wang Zhang-Xin, Fan Er-Pan, Li Xiao-Xue, Wang Hong-Jin. Topological phase transition based on structure reversal of two-dimensional photonic crystals and construction of topological edge states. Acta Physica Sinica, 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [7] Wang Ting, Cui Zhi-Wen, Liu Jin-Xia, Wang Ke-Xie. Propagation of elastic waves in saturated porous medium containing a small amount of bubbly fluid. Acta Physica Sinica, 2018, 67(11): 114301. doi: 10.7498/aps.67.20180209
    [8] Wang Jian, Wu Shi-Qiao, Mei Jun. Topological phase transitions caused by a simple rotational operation in two-dimensional acoustic crystals. Acta Physica Sinica, 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [9] Gao Han-Feng, Zhang Xin, Wu Fu-Gen, Yao Yuan-Wei. Semi-Dirac cone and singular features of two-dimensional three-component phononic crystals. Acta Physica Sinica, 2016, 65(4): 044301. doi: 10.7498/aps.65.044301
    [10] Wu Jian, Bai Xiao-Chun, Xiao Yong, Geng Ming-Xin, Yu Dian-Long, Wen Ji-Hong. Low frequency band gaps and vibration reduction properties of a multi-frequency locally resonant phononic plate. Acta Physica Sinica, 2016, 65(6): 064602. doi: 10.7498/aps.65.064602
    [11] Cao Hui-Xian, Mei Jun. Semi-Dirac points in two-dimensional phononic crystals. Acta Physica Sinica, 2015, 64(19): 194301. doi: 10.7498/aps.64.194301
    [12] Wu Zhi-Zheng, Yu Kun, Guo Zhi-Wei, Li Yun-Hui, Jiang Hai-Tao. Electronic Tamm states of metamaterial-like semiconductor composite structures. Acta Physica Sinica, 2015, 64(10): 107302. doi: 10.7498/aps.64.107302
    [13] Liu Qi-Neng. Transmission characteristics of elastic wave in 1D solid-solid cylindrical phononic crystal. Acta Physica Sinica, 2011, 60(3): 034301. doi: 10.7498/aps.60.034301
    [14] Dong Hua-Feng, Wu Fu-Gen, Mu Zhong-Fei, Zhong Hui-Lin. Effect of basis configuration on acoustic band structure in two-dimensional complex phononic crystals. Acta Physica Sinica, 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [15] Cui Zhi-Wen, Liu Jin-Xia, Wang Chun-Xia, Wang Ke-Xie. Elastic waves in Maxwell fluid-saturated porous media with the squirt flow mechanism. Acta Physica Sinica, 2010, 59(12): 8655-8661. doi: 10.7498/aps.59.8655
    [16] Cai Li, Han Xiao-Yun, Wen Xi-Sen. The elastic wave propagation in two-dimensional phononic crystal at low frequencies and the anisotropy of effective velocity. Acta Physica Sinica, 2008, 57(3): 1746-1752. doi: 10.7498/aps.57.1746
    [17] Wen Ji-Hong, Wang Gang, Liu Yao-Zong, Yu Dian-Long. Lumped-mass method on calculation of elastic band gaps of one-dimensional phononic crystals. Acta Physica Sinica, 2004, 53(10): 3384-3388. doi: 10.7498/aps.53.3384
    [18] Qi Gong-Jin, Yang Sheng-Liang, Bai Shu-Xin, Zhao Xun. A study of the band structure in two-dimensional phononic crystals based on plane-wave algorithm. Acta Physica Sinica, 2003, 52(3): 668-671. doi: 10.7498/aps.52.668
    [19] FENG KE-AN, CAI JUN-DAO, PU FU-CHO. FREDHOLM INTEGRAL EQUATION OF THE SECOND KIND IN ANTENNA THEORY. Acta Physica Sinica, 1978, 27(2): 187-202. doi: 10.7498/aps.27.187
    [20] КРИТИЧЕСКОЕ МАГНИТНОЕ ПОЛЕ СВЕРХПРОВОДНЙКА ВТОРОЙ ГРУППЫ. Acta Physica Sinica, 1965, 21(3): 560-568. doi: 10.7498/aps.21.560
Metrics
  • Abstract views:  5735
  • PDF Downloads:  231
  • Cited By: 0
Publishing process
  • Received Date:  14 April 2021
  • Accepted Date:  13 May 2021
  • Available Online:  07 June 2021
  • Published Online:  20 September 2021

/

返回文章
返回
Baidu
map