Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of noice on tripartite quantum probe state

Zhao Jun-Long Zhang Yi-Dan Yang Ming

Citation:

Influence of noice on tripartite quantum probe state

Zhao Jun-Long, Zhang Yi-Dan, Yang Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Quantum metrology is a subject of studying quantum measurement and quantum statistical deduction, and the precision of parameter estimation can be enhanced by quantum properties. In general, the process of parameter estimation includes four steps:preparation of probe state, parameterization process, measurement, and data processing. Of these four steps, the preparation of probe state is the most crucial. However, in practical applications, in the process of preparing quantum probe state, the probe system will couple to its environment, which will inevitably cause the quantum properties of the probe system to deteriorate, and thus reducing the precision of quantum parameter estimation. The dynamics of quantum Fisher information (QFI) for W state and Greenberger-Horne-Zeilinger (GHZ) state have been studied in decoherence channels. Because W state and GHZ state have different entanglement properties, the studies of the dynamics of QFI for the superposition of W state and GHZ state are of practical significance in quantum metrology field. In this paper, the dynamics of QFIs for the superposition of W state and GHZ state in three typical decoherence channels (depolarization channel, amplitude damping channel and phase damping channel) are studied. In the four steps of quantum parameter estimation, our major attention is paid to the first step (i.e., the preparation of probe state). For comparison, the QFIs of different probe states are studied, with the other three steps fixed, i.e., all the probe states will undergo the same parameterization, measurement and estimation process. The parameterization process involved here is a quantum spin operation (specified by the spin rotation direction), which is chosen to maximize the QFI of the probe state. The initial probe states under consideration are the superpositions of W state and GHZ state of three-particle and five-particle systems, and the QFI dynamics of those probe states are studied in the three different typical decoherence channels. By using the operator-sum (Kraus) representation of those three typical decoherence channels, the QFI dynamics of the probe state can be analytically derived in three different decoherence channels. The results show that in the depolarization channel, the maximum QFI of the probe state decreases with the decoherence evolving to zero in the end; in the amplitude damping channel, the QFI of the probe state decreases to the minimum with the decoherence evolution and then increases to the shot noise limit; in the phase damping channel, the QFI of the probe state decreases with the evolution of decoherence, but the final stable value is not zero. Further analyses show that W state component of the superposition plays a role in resisting phase damping and the GHZ state component plays a role in resisting amplitude damping. These results can help us to choose the optimal probe state for maximizing the estimation precision in practice.
      Corresponding author: Yang Ming, mingyang@ahu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274010, 11374085).
    [1]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439

    [2]

    Jin G R, Kim S W 2007 Phys. Rev. A 76 043621

    [3]

    Hyllus P, Laskowski W, Krischek P, Schwemmer C, Wieczorek W, Weinfurter H, Pezzé L, Smerzi A 2012 Phys. Rev. A 85 022321

    [4]

    Liu W F, Zhang L H, Li C J 2010 Int. J. Theor. Phys. 49 2463

    [5]

    Liu J, Xiong H N, Song F, Wang X G 2014 Physica A 410 167

    [6]

    Yao Y, Xiao X, Ge L, Wang X G, Sun C P 2014 Phys. Rev. A 89 042336

    [7]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401

    [8]

    Ozaydin F 2014 Phys. Lett. A 378 3161

    [9]

    Ozaydin F, Altintas A A, Bugu S, Yesilyurt C 2014 Acta Phys. Pol. A 125 606

    [10]

    Luati A 2004 Ann. Stat. 32 1770

    [11]

    Jing X X, Liu J, Xiong H N, Wang X G 2015 Phys. Rev. A 92 012312

    [12]

    Pezzé L, Smerzi A 2009 Phys. Rev. Lett. 102 100401

    [13]

    Escher B M, Filho R L D M, Davidovich L 2011 Nat. Phys. 7 406

    [14]

    Demokowicz-Dobrzański R, Kolodyński J, Gutǎ M 2012 Nat. Commun. 3 1063

    [15]

    Roy S M, Braunstein S L 2008 Phys. Rev. Lett. 100 220501

    [16]

    Greenberger D M, Horne M A, Shimony A, Zeilinger A 1990 Am. J. Phys. 58 1131

    [17]

    Dr W, Vidal G, Cirac J I 2000 Phys. Rev. A 62 062314

    [18]

    Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910

    [19]

    Ma J, Huang Y X, Wang X G, Sun C P 2011 Phys. Rev. A 84 022302

    [20]

    Ozaydin F, Altintas A A, Bugu S, Yesilyurt C 2013 Int. J. Theor. Phys. 52 2977

    [21]

    Ozaydin F, Altintas A A, Bugu S, Yesilyurt C 2014 Int. J. Theor. Phys. 53 3219

    [22]

    Yi X J, Huang G Q, Wang J M 2012 Int. J. Theor. Phys. 51 3458

    [23]

    Erol V 2017 Int. J. Theor. Phys. 56 3202

    [24]

    Erol V 2017 arXiv: 1704.07367 (preprints)

    [25]

    Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press) pp56-57

    [26]

    Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North-Holland) pp102-104

    [27]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439

    [28]

    Paris M G A 2009 Int. J. Quantum Inf. 07 125

    [29]

    Ma J, Huang Y X, Wang X G, Sun C P 2011 Phys. Rev. A 84 022302

    [30]

    Pang S S, Brun T A 2014 Phys. Rev. A 90 022117

    [31]

    Liu J, Jing X X, Wang X G 2014 Sci. Rep. 5 8565

    [32]

    Wang X, Shi X 2015 Phys. Rev. A 92 042318

  • [1]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439

    [2]

    Jin G R, Kim S W 2007 Phys. Rev. A 76 043621

    [3]

    Hyllus P, Laskowski W, Krischek P, Schwemmer C, Wieczorek W, Weinfurter H, Pezzé L, Smerzi A 2012 Phys. Rev. A 85 022321

    [4]

    Liu W F, Zhang L H, Li C J 2010 Int. J. Theor. Phys. 49 2463

    [5]

    Liu J, Xiong H N, Song F, Wang X G 2014 Physica A 410 167

    [6]

    Yao Y, Xiao X, Ge L, Wang X G, Sun C P 2014 Phys. Rev. A 89 042336

    [7]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401

    [8]

    Ozaydin F 2014 Phys. Lett. A 378 3161

    [9]

    Ozaydin F, Altintas A A, Bugu S, Yesilyurt C 2014 Acta Phys. Pol. A 125 606

    [10]

    Luati A 2004 Ann. Stat. 32 1770

    [11]

    Jing X X, Liu J, Xiong H N, Wang X G 2015 Phys. Rev. A 92 012312

    [12]

    Pezzé L, Smerzi A 2009 Phys. Rev. Lett. 102 100401

    [13]

    Escher B M, Filho R L D M, Davidovich L 2011 Nat. Phys. 7 406

    [14]

    Demokowicz-Dobrzański R, Kolodyński J, Gutǎ M 2012 Nat. Commun. 3 1063

    [15]

    Roy S M, Braunstein S L 2008 Phys. Rev. Lett. 100 220501

    [16]

    Greenberger D M, Horne M A, Shimony A, Zeilinger A 1990 Am. J. Phys. 58 1131

    [17]

    Dr W, Vidal G, Cirac J I 2000 Phys. Rev. A 62 062314

    [18]

    Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910

    [19]

    Ma J, Huang Y X, Wang X G, Sun C P 2011 Phys. Rev. A 84 022302

    [20]

    Ozaydin F, Altintas A A, Bugu S, Yesilyurt C 2013 Int. J. Theor. Phys. 52 2977

    [21]

    Ozaydin F, Altintas A A, Bugu S, Yesilyurt C 2014 Int. J. Theor. Phys. 53 3219

    [22]

    Yi X J, Huang G Q, Wang J M 2012 Int. J. Theor. Phys. 51 3458

    [23]

    Erol V 2017 Int. J. Theor. Phys. 56 3202

    [24]

    Erol V 2017 arXiv: 1704.07367 (preprints)

    [25]

    Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press) pp56-57

    [26]

    Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North-Holland) pp102-104

    [27]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439

    [28]

    Paris M G A 2009 Int. J. Quantum Inf. 07 125

    [29]

    Ma J, Huang Y X, Wang X G, Sun C P 2011 Phys. Rev. A 84 022302

    [30]

    Pang S S, Brun T A 2014 Phys. Rev. A 90 022117

    [31]

    Liu J, Jing X X, Wang X G 2014 Sci. Rep. 5 8565

    [32]

    Wang X, Shi X 2015 Phys. Rev. A 92 042318

  • [1] Ren Ya-Lei, Zhou Tao. Quantum Fisher information in moving reference frame. Acta Physica Sinica, 2024, 73(5): 050601. doi: 10.7498/aps.73.20231394
    [2] Zhou Xian-Tao, Jiang Ying-Hua. Quantum secure direct communication scheme with identity authentication. Acta Physica Sinica, 2023, 72(2): 020302. doi: 10.7498/aps.72.20221684
    [3] Liu Ran, Wu Ze, Li Yu-Chen, Chen Yu-Quan, Peng Xin-Hua. Experimentally characterizing multiparticle entanglement based on measuring quantum Fisher information. Acta Physica Sinica, 2023, 72(11): 110305. doi: 10.7498/aps.72.20230356
    [4] Li Jing, Ding Hai-Tao, Zhang Dan-Wei. Quantum Fisher information and parameter estimation in non-Hermitian Hamiltonians. Acta Physica Sinica, 2023, 72(20): 200601. doi: 10.7498/aps.72.20230862
    [5] Li Yan, Ren Zhi-Hong. Quantum Fisher information of multi-qubit WV entangled state under Lipkin-Meshkov-Glick model. Acta Physica Sinica, 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [6] He Zhi, Jiang Deng-Kui, Li Yan. Non-Markovian measure independent of initial states of open systems. Acta Physica Sinica, 2022, 71(21): 210303. doi: 10.7498/aps.71.20221053
    [7] Niu Ming-Li, Wang Yue-Ming, Li Zhi-Jian. Estimation of light-matter coupling constant under dispersive interaction based on quantum Fisher information. Acta Physica Sinica, 2022, 71(9): 090601. doi: 10.7498/aps.71.20212029
    [8] Wang Shuai, Sui Yong-Xing, Meng Xiang-Guo. Application of photon-added two-mode squeezed vacuum states to phase estimation based on Mach-Zehnder interferometer. Acta Physica Sinica, 2020, 69(12): 124202. doi: 10.7498/aps.69.20200179
    [9] Ren Zhi-Hong, Li Yan, Li Yan-Na, Li Wei-Dong. Development on quantum metrology with quantum Fisher information. Acta Physica Sinica, 2019, 68(4): 040601. doi: 10.7498/aps.68.20181965
    [10] Wu Ying, Li Jin-Fang, Liu Jin-Ming. Enhancement of quantum Fisher information of quantum teleportation by optimizing partial measurements. Acta Physica Sinica, 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [11] Fan Rong-Hua, Guo Bang-Hong, Guo Jian-Jun, Zhang Cheng-Xian, Zhang Wen-Jie, Du Ge. Entangled W state of multi degree of freedom system based on orbital angular momentum. Acta Physica Sinica, 2015, 64(14): 140301. doi: 10.7498/aps.64.140301
    [12] Guo Hong. Effects of initial states on the quantum correlation in Bose-Hubbard model. Acta Physica Sinica, 2015, 64(22): 220301. doi: 10.7498/aps.64.220301
    [13] Chang Feng, Wang Xiao-Qian, Gai Yong-Jie, Yan Dong, Song Li-Jun. Quantum Fisher information and spin squeezing in the interaction system of light and matter. Acta Physica Sinica, 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [14] Song Li-Jun, Yan Dong, Liu Yie. Quantum Fisher information and chaos in the system of Bose-Einstein condensate. Acta Physica Sinica, 2011, 60(12): 120302. doi: 10.7498/aps.60.120302
    [15] Zha Xin-Wei, Zhang Chun-Min. Teleportation of on N-particle GHZ state via one three-particle W state. Acta Physica Sinica, 2008, 57(3): 1339-1342. doi: 10.7498/aps.57.1339
    [16] Yin Ji-Wen, Xiao Jing-Lin, Yu Yi-Fu, Wang Zi-Wu. The effect of Coulomb potential to the decoherence of the parabolic quantum dot qubit. Acta Physica Sinica, 2008, 57(5): 2695-2698. doi: 10.7498/aps.57.2695
    [17] Zhang Deng-Yu, Guo Ping, Gao Feng. Fidelity of two-level atoms’ quantum states in a strong thermal radiation field. Acta Physica Sinica, 2007, 56(4): 1906-1910. doi: 10.7498/aps.56.1906
    [18] Zhou Xiao-Qing, Wu Yun-Wen. Discussion on building the net of quantum teleportation using three-particle entangled states. Acta Physica Sinica, 2007, 56(4): 1881-1887. doi: 10.7498/aps.56.1881
    [19] Huang Yong-Chang, Liu Min. General WGHZ state and its disentanglement and probabilistic teleportation. Acta Physica Sinica, 2005, 54(10): 4517-4523. doi: 10.7498/aps.54.4517
    [20] LIN XIU, LI HONG-CAI. PREPARATION OF MULTI-ATIOM GHZ STATES VIA THE RAMAN INTERACTION OF V-TYPE THREE-LEVEL ATOMSAND ONE CAVITY-FIELD. Acta Physica Sinica, 2001, 50(9): 1689-1692. doi: 10.7498/aps.50.1689
Metrics
  • Abstract views:  5789
  • PDF Downloads:  141
  • Cited By: 0
Publishing process
  • Received Date:  05 January 2018
  • Accepted Date:  26 March 2018
  • Published Online:  20 July 2019

/

返回文章
返回
Baidu
map