搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bose-Hubbard模型中系统初态对量子关联的影响

郭红

引用本文:
Citation:

Bose-Hubbard模型中系统初态对量子关联的影响

郭红

Effects of initial states on the quantum correlation in Bose-Hubbard model

Guo Hong
PDF
导出引用
  • 量子关联是量子信息、量子计算与量子计量领域的重要资源, 在量子纠缠和贝尔非局域性中, 两子系统起着同等关键的作用, Einstein-Podolsky-Rosen (EPR)量子引导关联的强度介于量子纠缠和贝尔非局域性之间, 对单向EPR量子引导关联而言两子系统的作用不对等. 本文研究了双模Bose-Hubbard模型中模间量子关联的动态特性, 揭示了EPR量子引导关联的取向对系统初态模间交换对称性的依赖关系. 根据Hillery-Zubairy纠缠判据以及基于最大平均量子Fisher信息的纠缠判据考察了系统初态对模间量子纠缠演化规律的影响. 如果模间耦合强度远大于同一势阱内粒子间的相互作用, 初始处于SU(2)相干态的系统在具有确定的两子系统交换对称性的条件下, 其量子关联呈现简单的周期性演化规律; 当这种对称性破缺时, 模间量子关联的演化呈现较复杂的崩塌与回复现象.
    Quantum correlation is an important resource in quantum information, quantum computation, and quantum metrology. Quantum entanglement, Einstein-Podolsky-Rosen (EPR) quantum steering and Bell nonlocality are the major quantum correlations. For quantum entanglement and Bell nonlocality, two subsystems play the same significant roles. EPR quantum steering is stronger than entanglement and weaker than Bell nonlocality. It represents the ability of one subsystem to nonlocally affect another subsystem's states through local measurements. In this paper, the dynamic quantum correlation between the modes in the two-site Bose-Hubbard model is investigated. According to Hillery-Zubairy entanglement criterion and based on maximum mean quantum Fisher information, the influences of initial states on the quantum entanglement evolutions are explored. If the coupling between the modes is much greater than that of the particles at the same site, and the initial states are symmetric or anti-symmetric SU(2) coherent states, the quantum correlations show simple periodic evolutions. The oscillation amplitudes of the evolutions increase with the interaction between the particles at the same site. The oscillation period decreases with the coupling strength between the modes. The dependence of the period on the interaction of the particles at the same site is related to the initial states. In other words, the time evolutions of quantum correlation are closely related to the symmetry of the initial states. In the case of symmetric (anti-symmetric) SU(2) coherent state and repulsive (attractive) interaction of the particles at the same site, the system presents two-way quantum steering. When the subsystem exchange symmetry of the initial states is broken, the collapse and revival of quantum correlation appear, moreover one-way quantum steering emerges in the infancy. One-way quantum steering is asymmetric for two subsystems. So exchange asymmetry of the initial state is necessary condition of one-way quantum steering when the Hamiltonian of the system is symmetric for two subsystems.
      通信作者: 郭红, guohongphy@qq.com
    • 基金项目: 国家量子光学与光量子器件重点实验室(批准号: KF201406)资助的课题.
      Corresponding author: Guo Hong, guohongphy@qq.com
    • Funds: Project supported by the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices, China (Grant No. KF201406).
    [1]

    Haas F, Volz J, Gehr R, Reichel J, Estve J 2014 Science 344 180

    [2]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222

    [3]

    Sahota J, Quesada N 2015 Phys. Rev. A 91 013808

    [4]

    Marino A M, Pooser R C, Boyer V, Lett P D 2009 Nature 457 859

    [5]

    Piani M, Watrous J 2015 Phys. Rev. Lett. 114 060404

    [6]

    Bowles J, Vrtesi T, Quintino M T, Brunner N 2014 Phys. Rev. Lett. 112 200402

    [7]

    Hndchen V, Eberle T, Steinlechner S, Samblowski A, Franz T, Werner R F, Schnabel R 2012 Nat. Photon. 6 596

    [8]

    Hillery M, Zubairy M S 2006 Phys. Rev. Lett. 96 050503

    [9]

    Hillery M, Zubairy M S 2006 Phys. Rev. A 74 032333

    [10]

    Smerzi A 2009 Phys. Rev. Lett. 102 100401

    [11]

    Ma J, Wang X G 2009 Phys. Rev. A 80 012318

    [12]

    Li N, Luo S 2013 Phys. Rev. A 88 014301

    [13]

    Blch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885

    [14]

    Blch I, Dalibard J, Nascimbne S 2012 Nat. Phys. 8 267

    [15]

    Blch I 2008 Nature 453 1015

    [16]

    Zhang Z H, Lu P, Feng S P, Yang S J 2012 Phys. Rev. A 85 033617

    [17]

    Giri S K, Sen B, Ooi C H R, Pathak A 2014 Phys. Rev. A 89 033628

    [18]

    McConnell R, Zhang H, Hu J Z, Ćuk S, Vuleti V 2015 Nature 519 439

    [19]

    Gersch H A Knollman G C 1963 Phys. Rev. 129 959

    [20]

    Jaksch D, Bruder C, Cirac J I, Gardiner C W, Zoller P 1998 Phys. Rev. Lett. 81 3018

    [21]

    Eichler C, Salathe Y, Mlynek J, Schmidt S, Wallraff A 2014 Phys. Rev. Lett. 113 110502

    [22]

    Deng X H, Jia C J, Chien C C 2015 Phys. Rev. B 91 054515

    [23]

    Pudlik T, Hennig H, Witthaut D, Campbell D K 2014 Phys. Rev. A 90 053610

    [24]

    He Q Y, Drummond P D, Olsen M K, Reid M D 2012 Phys. Rev. A 86 023626

    [25]

    Marzolino U, Buchleitner A 2015 Phys. Rev. A 91 032316

    [26]

    Milburn G J, Corney J, Wright E M, Walls D F 1997 Phys. Rev. A 55 4318

    [27]

    Meng X J, Feng H R, Zheng Y J 2014 Chin. Phys. B 23 040305

    [28]

    OpancĆuk B, He Q Y, Reid M D, Drummond P D 2012 Phys. Rev. A 86 023625

    [29]

    Yang S J. Nie S M 2010 Phys. Rev. A 82 061607

    [30]

    Arecchi F T, Courtens E, Gilmore R, Thomas H 1972 Phys. Rev. A 6 2211

    [31]

    Sanders B C, Gerry C C 2014 Phys. Rev. A 90 045804

    [32]

    Bohmann M, Sperling J, Vogel W 2015 Phys. Rev. A 91 042332

    [33]

    Ma J, Huang Y X, Wang X G, Sun C P 2011 Phys. Rev. A 84 022302

    [34]

    Hyllus P, Laskowski W, Krischek R, Schwemmer C, Wieczorek W, Weinfurter H, Pezz L, Smerzi A 2012 Phys. Rev. A 85 022321

    [35]

    Strobel H, Muessel W, Linnemann D, Zibold T, Hume D B, Pezz L, Smerzi A, Oberthaler M K 2014 Science 345 424

  • [1]

    Haas F, Volz J, Gehr R, Reichel J, Estve J 2014 Science 344 180

    [2]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222

    [3]

    Sahota J, Quesada N 2015 Phys. Rev. A 91 013808

    [4]

    Marino A M, Pooser R C, Boyer V, Lett P D 2009 Nature 457 859

    [5]

    Piani M, Watrous J 2015 Phys. Rev. Lett. 114 060404

    [6]

    Bowles J, Vrtesi T, Quintino M T, Brunner N 2014 Phys. Rev. Lett. 112 200402

    [7]

    Hndchen V, Eberle T, Steinlechner S, Samblowski A, Franz T, Werner R F, Schnabel R 2012 Nat. Photon. 6 596

    [8]

    Hillery M, Zubairy M S 2006 Phys. Rev. Lett. 96 050503

    [9]

    Hillery M, Zubairy M S 2006 Phys. Rev. A 74 032333

    [10]

    Smerzi A 2009 Phys. Rev. Lett. 102 100401

    [11]

    Ma J, Wang X G 2009 Phys. Rev. A 80 012318

    [12]

    Li N, Luo S 2013 Phys. Rev. A 88 014301

    [13]

    Blch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885

    [14]

    Blch I, Dalibard J, Nascimbne S 2012 Nat. Phys. 8 267

    [15]

    Blch I 2008 Nature 453 1015

    [16]

    Zhang Z H, Lu P, Feng S P, Yang S J 2012 Phys. Rev. A 85 033617

    [17]

    Giri S K, Sen B, Ooi C H R, Pathak A 2014 Phys. Rev. A 89 033628

    [18]

    McConnell R, Zhang H, Hu J Z, Ćuk S, Vuleti V 2015 Nature 519 439

    [19]

    Gersch H A Knollman G C 1963 Phys. Rev. 129 959

    [20]

    Jaksch D, Bruder C, Cirac J I, Gardiner C W, Zoller P 1998 Phys. Rev. Lett. 81 3018

    [21]

    Eichler C, Salathe Y, Mlynek J, Schmidt S, Wallraff A 2014 Phys. Rev. Lett. 113 110502

    [22]

    Deng X H, Jia C J, Chien C C 2015 Phys. Rev. B 91 054515

    [23]

    Pudlik T, Hennig H, Witthaut D, Campbell D K 2014 Phys. Rev. A 90 053610

    [24]

    He Q Y, Drummond P D, Olsen M K, Reid M D 2012 Phys. Rev. A 86 023626

    [25]

    Marzolino U, Buchleitner A 2015 Phys. Rev. A 91 032316

    [26]

    Milburn G J, Corney J, Wright E M, Walls D F 1997 Phys. Rev. A 55 4318

    [27]

    Meng X J, Feng H R, Zheng Y J 2014 Chin. Phys. B 23 040305

    [28]

    OpancĆuk B, He Q Y, Reid M D, Drummond P D 2012 Phys. Rev. A 86 023625

    [29]

    Yang S J. Nie S M 2010 Phys. Rev. A 82 061607

    [30]

    Arecchi F T, Courtens E, Gilmore R, Thomas H 1972 Phys. Rev. A 6 2211

    [31]

    Sanders B C, Gerry C C 2014 Phys. Rev. A 90 045804

    [32]

    Bohmann M, Sperling J, Vogel W 2015 Phys. Rev. A 91 042332

    [33]

    Ma J, Huang Y X, Wang X G, Sun C P 2011 Phys. Rev. A 84 022302

    [34]

    Hyllus P, Laskowski W, Krischek R, Schwemmer C, Wieczorek W, Weinfurter H, Pezz L, Smerzi A 2012 Phys. Rev. A 85 022321

    [35]

    Strobel H, Muessel W, Linnemann D, Zibold T, Hume D B, Pezz L, Smerzi A, Oberthaler M K 2014 Science 345 424

  • [1] 任亚雷, 周涛. 运动参考系中量子Fisher信息.  , 2024, 73(5): 050601. doi: 10.7498/aps.73.20231394
    [2] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠.  , 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [3] 李竞, 丁海涛, 张丹伟. 非厄米哈密顿量中的量子Fisher信息与参数估计.  , 2023, 72(20): 200601. doi: 10.7498/aps.72.20230862
    [4] 刘然, 吴泽, 李宇晨, 陈昱全, 彭新华. 基于量子Fisher信息测量的实验多体纠缠刻画.  , 2023, 72(11): 110305. doi: 10.7498/aps.72.20230356
    [5] 李岩, 任志红. 多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息.  , 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [6] 牛明丽, 王月明, 李志坚. 基于量子Fisher信息的耗散相互作用光-物质耦合常数的估计.  , 2022, 71(9): 090601. doi: 10.7498/aps.71.20212029
    [7] 陈爱民, 刘东昌, 段佳, 王洪雷, 相春环, 苏耀恒. 含有Dzyaloshinskii-Moriya相互作用的自旋1键交替海森伯模型的量子相变和拓扑序标度.  , 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [8] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控.  , 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [9] 任志红, 李岩, 李艳娜, 李卫东. 基于量子Fisher信息的量子计量进展.  , 2019, 68(4): 040601. doi: 10.7498/aps.68.20181965
    [10] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠.  , 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [11] 程景, 单传家, 刘继兵, 黄燕霞, 刘堂昆. Tavis-Cummings模型中的几何量子失协特性.  , 2018, 67(11): 110301. doi: 10.7498/aps.67.20172699
    [12] 王灿灿. 量子纠缠与宇宙学弗里德曼方程.  , 2018, 67(17): 179501. doi: 10.7498/aps.67.20180813
    [13] 赵军龙, 张译丹, 杨名. 噪声对一种三粒子量子探针态的影响.  , 2018, 67(14): 140302. doi: 10.7498/aps.67.20180040
    [14] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息.  , 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [15] 苟立丹, 王晓茜. 杨-巴克斯特自旋1/2链模型的量子关联研究.  , 2015, 64(7): 070302. doi: 10.7498/aps.64.070302
    [16] 常锋, 王晓茜, 盖永杰, 严冬, 宋立军. 光与物质相互作用系统中的量子Fisher信息和自旋压缩.  , 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [17] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠.  , 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [18] 宋立军, 严冬, 刘烨. 玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌.  , 2011, 60(12): 120302. doi: 10.7498/aps.60.120302
    [19] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议.  , 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [20] 胡要花, 方卯发, 廖湘萍, 郑小娟. 二项式光场与级联三能级原子的量子纠缠.  , 2006, 55(9): 4631-4637. doi: 10.7498/aps.55.4631
计量
  • 文章访问数:  6753
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-22
  • 修回日期:  2015-07-23
  • 刊出日期:  2015-11-05

/

返回文章
返回
Baidu
map