Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rapid Preparation of Rydberg Superatom W State Using Superadiabatic Techniques

YANG Liping WANG Jiping DONG Li XIU Xiaoming JI Yanqiang

Citation:

Rapid Preparation of Rydberg Superatom W State Using Superadiabatic Techniques

YANG Liping, WANG Jiping, DONG Li, XIU Xiaoming, JI Yanqiang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The W state, as a robust multipartite entangled state, plays an important role in quantum information processing, quantum network construction and quantum computing. In this paper, the three-level ladder-type Rydberg atomic system is put into the Rydberg blocking ball to form a superatom. Each superatom has many collective states including just one Rydberg excitation constrained by the Rydberg blockade effect. In the weak cavity field limit, at most one atom can be pumped into excited state, then we can describe the superatom by a three-level ladder-type system. Afterwards we encode quantum information on the effective energy levels of Rydberg superatoms and propose a fast scheme for preparing the Rydberg superatom W state based on the superadiabatic iterative technique and quantum Zeno dynamics, this scheme can be achieved in only one step by controlling the laser pulses. In the current scheme, the superatoms are trapped in spatially separated cavities connected by optical fibers, which significantly enhances the feasibility of experimental manipulation. A remarkable feature is that it does not require precise control of experimental parameters and interaction time. Meanwhile, the form of counterdiabatic Hamiltonian is the same as that of the effective Hamiltonian. Through numerical simulations, the fidelity of this scheme can reach 99.94%. Even considering decoherence effects, including atomic spontaneous emission and photon leakage, the fidelity can still exceed 97.5%, further demonstrating the strong robustness of the solution. In addition, the Rabi frequency can be characterized as a linear superposition of Gaussian functions, this representation significantly alleviates the complexity encountered in practical experiments. Futhermore, we also analyzed the impact of parameter fluctuations on the fidelity, the results show that this scheme is robust against parameter fluctuations. At last, the present scheme is extended to the cases of N Rydberg superatoms, which shows the scalability of our scheme.
  • 图 1  (a)单个里德堡原子能级结构图; (b)里德堡超级原子的等效能级结构图

    Figure 1.  (a) Energy level structure diagram of a single Rydberg atom; (b) The equivalent energy level structure diagram of Rydberg superatom.

    图 2  里德堡超级原子与腔系统的示意图. SA是里德堡超级原子, $ \Omega_k $是第k个腔中经典场的拉比频率

    Figure 2.  Schematic diagram of the structure of the Rydberg superatom-cavity system. SA denots the Rydberg superatom, and $ \Omega_k $ is the classical field Rabi frequency in the k-th cavity.

    图 3  $ \theta_1(t) $随时间的变化关系. 选取的参数为 $ t_0 = 0.14 T $ 和 $ t_c = 0.19 T $

    Figure 3.  The $ \theta_1(t) $ as a function of the time. The parameters $ t_0 = 0.14 T $ and $ t_c = 0.19 T $.

    图 4  $ \theta_2(t) $ 随时间的变化关系. 选取的参数为$ t_0 = 0.14 T $ 和 $ t_c = 0.19 T $

    Figure 4.  The $ \theta_2(t) $ as a function of the time. The parameters $ t_0 = 0.14 T $and $ t_c = 0.19 T $.

    图 5  $ \Omega_0(T^{-1}) $对保真度$ F(T) $的影响图. 当$ \Omega_0 = 8 T^{-1} $时, 保真度$ F(T) = 0.9994 $

    Figure 5.  The influence of $ \Omega_0(T^{-1}) $ on fidelity $ F(T) $. When $ \Omega_0 = 8 T^{-1} $, the fidelity $ F(T) = 0.9994 $.

    图 6  (a)对比脉冲$ \Omega'_1(t) $和拟合的高斯脉冲$ \widetilde{\Omega}_1(t) $. (b)对比脉冲$ \Omega'_2(t) $和拟合的高斯脉冲$ \widetilde{\Omega}_2(t) $

    Figure 6.  (a) Comparing the pulse $ \Omega '_1 (t) $ and the fitting of gaussian pulse $ \widetilde {\Omega} _1 (t) $. (b) Comparing the pulse $ \Omega '_2 (t) $ and the fitting of gaussian pulse $ \widetilde {\Omega} _2 (t) $.

    图 7  W态的保真度在超绝热迭代$ T = 8/\Omega_0 $、绝热演化$ T = 8/\Omega_0 $、绝热演化$ T = 35/\Omega_0 $三种不同情况下随时间的变化

    Figure 7.  Under the three different conditions: superadiabatic iteration $ T = 8/\Omega_0 $, adiabatic evolution $ T = 8/\Omega_0 $ and adiabatic evolution $ T = 35/\Omega_0 $, the fidelity of W state as a function of the time.

    图 8  哈密顿量$ H_{tot} $的控制下的W态的保真度与$ \kappa/\lambda $和$ \gamma/\lambda $的关系. $ T = 8/\Omega_0, \Omega_0 = 0.1\lambda $

    Figure 8.  The relationship between the fidelity of the W state and $ \kappa/\lambda $, $ \gamma/\lambda $ by the Hamiltonian $ H_{tot} $. $ T = 8 / \Omega_0, $$ \Omega_0 = 0.1\lambda $.

    图 9  (a)保真度随$ \delta \widetilde{\Omega}_1 $ 和 $ \delta \widetilde{\Omega}_2 $的变化. (b)保真度随$ \delta \lambda $和$ \delta v $的变化

    Figure 9.  (a)The fidelity versus $ \delta \widetilde{\Omega}_1 $ and $ \delta \widetilde{\Omega}_2 $. (b)The fidelity versus $ \delta \lambda $ and $ \delta v $.

    图 10  N个里德堡超级原子-腔系统结构型的示意图. 每个里德堡超级原子被分别放置在不同的真空腔中, 第 2 到第 N 个腔均与第 1 个腔相连. $ \Omega_N $是第N个腔中经典场驱动的拉比频率

    Figure 10.  A schematic diagram illustrating the structure of N-Rydberg superatom-cavity system. Each of the Rydberg superatom is placed in a separate vacuum cavity, with cavities 2 through N all connected to cavity 1. $ \Omega_N $ is the classical field-driven Rabi frequency in the N-th cavity.

    Baidu
  • [1]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [2]

    Markham D, Sanders B C 2008 Phys. Rev. A 78 042309Google Scholar

    [3]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [4]

    Luo Y H, Zhong H S, Erhard M, Wang X L, Peng L C, Krenn M, Jiang X, Li L, Liu N L, Lu C Y, et al 2019 Phys. Rev. Lett. 123 070505Google Scholar

    [5]

    Xia Y, Song J, Lu P M, Song H S 2010 JOSA B 27 A1Google Scholar

    [6]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [7]

    Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557Google Scholar

    [8]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302Google Scholar

    [9]

    Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar

    [10]

    Briegel H J, Browne D E, Dür W, Raussendorf R, Van den Nest M 2009 Nat. Phys. 5 19Google Scholar

    [11]

    Zhao P Z, Cui X D, Xu G, Sjöqvist E, Tong D 2017 Phys. Rev. A 96 052316Google Scholar

    [12]

    Su S L, Gao Y, Liang E, Zhang S 2017 Phys. Rev. A 95 022319Google Scholar

    [13]

    Wu J L, Su S L, Wang Y, Song J, Xia Y, Jiang Y Y 2020 Opt. Lett. 45 1200Google Scholar

    [14]

    Li X H, Deng F G, Zhou H Y 2006 Phys. Rev. A 74 054302Google Scholar

    [15]

    Zhu A D, Xia Y, Fan Q B, Zhang S 2006 Phys. Rev. A 73 022338Google Scholar

    [16]

    Li T, Long G L 2020 New J. Phys. 22 063017Google Scholar

    [17]

    Greenberger D M, Horne M A, Zeilinger A 1989 In Bells theorem, quantum theory and conceptions of the universe (Springer), pp 69–72

    [18]

    Shao X Q, Liu F, Xue X W, Mu W, Li W b 2023 Phys. Rev. Appl 20 014014Google Scholar

    [19]

    Dür W, Vidal G, Cirac J I 2000 Phys. Rev. A 62 062314Google Scholar

    [20]

    Cabello A 2002 Phys. Rev. A 65 032108Google Scholar

    [21]

    Agrawal P, Pati A 2006 Phys. Rev. A 74 062320Google Scholar

    [22]

    Wang A, Wei Y Z, Li Z Y, Jiang M 2023 IET Quantum Commun. 4 200Google Scholar

    [23]

    Renner R 2008 Int. J. Quantum Inf. 6 1Google Scholar

    [24]

    Lo H K, Ma X, Chen K 2005 Phys. Rev. Lett. 94 230504Google Scholar

    [25]

    Lipinska V, Murta G, Wehner S 2018 Phys. Rev. A 98 052320Google Scholar

    [26]

    Miguel-Ramiro J, Riera-Sàbat F, Dür W 2023 PRX Quantum 4 040323Google Scholar

    [27]

    Su S L, Shao X Q, Wang H F, Zhang S 2014 Phys. Rev. A 90 054302Google Scholar

    [28]

    Han J X, Wu J L, Wang Y, Xia Y, Jiang Y Y, Song J 2021 Phys. Rev. A 103 032402Google Scholar

    [29]

    Shao X Q, Wang Z, Liu H, Yi X 2016 Phys. Rev. A 94 032307Google Scholar

    [30]

    Shao X Q, Su S L, Li L, Nath R, Wu J H, Li W 2024 Appl. Phys. Rev. 11

    [31]

    Shao Q P, Wang J, Ji Y, Liu Y, Dong L, Xiu X M 2023 J. Opt. Soc. Am. B 41 143

    [32]

    Zhang W Y, Wang C Q, Ji Y Q, Shao Q P, Wang J P, Wang J, Yang L P, Dong L, Xiu X M 2024 Adv. Quantum Technol. 7 2300140Google Scholar

    [33]

    Saffman M, Walker T G, Mølmer K 2010 Rev. Mod. Phys. 82 2313Google Scholar

    [34]

    Beguin L, Vernier A, Chicireanu R, Lahaye T, Browaeys A 2013 Phys. Rev. Lett. 110 263201Google Scholar

    [35]

    Xing T, Zhao P, Tong D 2021 Phys. Rev. A 104 012618Google Scholar

    [36]

    Lukin M D, Fleischhauer M, Cote R, Duan L, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901Google Scholar

    [37]

    Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D, Walker T, Saffman M 2009 Nat. Phys. 5 110Google Scholar

    [38]

    Gaëtan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nat. Phys. 5 115Google Scholar

    [39]

    Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P, Browaeys A 2010 Phys. Rev. Lett. 104 010502Google Scholar

    [40]

    Dudin Y O, Li L, Bariani F, Kuzmich A 2012 Nat. Phys. 8 790Google Scholar

    [41]

    Shao X Q, Wu J, Yi X 2017 Phys. Rev. A 95 062339Google Scholar

    [42]

    Su S L, Li W 2021 Phys. Rev. A 104 033716Google Scholar

    [43]

    Wu J L, Wang Y, Han J X, Su S L, Xia Y, Jiang Y, Song J 2021 Phys. Rev. A 103 012601Google Scholar

    [44]

    Zeiher J, Schauß P, Hild S, Macrì T, Bloch I, Gross C 2015 Phys. Rev. X 5 031015

    [45]

    Yang L, Wang J, Ji Y, Wang J, Zhang Z, Liu Y, Dong L, Xiu X 2024 Eur. Phys. J. Plus 139 1Google Scholar

    [46]

    Xu W, Venkatramani A V, Cantú S H, Šumarac T, Klüsener V, Lukin M D, Vuletić V 2021 Phys. Rev. Lett. 127 050501Google Scholar

    [47]

    Zhao P Z, Wu X, Xing T, Xu G, Tong D 2018 Phys. Rev. A 98 032313Google Scholar

    [48]

    Paris-Mandoki A, Braun C, Kumlin J, Tresp C, Mirgorodskiy I, Christaller F, Büchler H P, Hofferberth S 2017 Phys. Rev. X 7 041010

    [49]

    Liu Y L, Ji Y Q, Han X, Cui W X, Zhang S, Wang H F 2023 Adv. Quantum Technol. 6 2200173Google Scholar

    [50]

    Baksic A, Ribeiro H, Clerk A A 2016 Phys. Rev. Lett. 116 230503Google Scholar

    [51]

    Wu J L, Ji X, Zhang S 2017 Sci. Rep. 7 46255Google Scholar

    [52]

    Chen Y H, Qin W, Wang X, Miranowicz A, Nori F 2021 Phys. Rev. Lett. 126 023602Google Scholar

    [53]

    Giannelli L, Arimondo E 2014 Phys. Rev. A 89 033419Google Scholar

    [54]

    Wang X M, Zhang A Q, Zhao S M 2022 ACTA PHYSICA SINICA 71

    [55]

    Berry M V 2009 J. Phys. A: Math. Theor. 42 365303Google Scholar

    [56]

    Ibáñez S, Chen X, Muga J 2013 Phys. Rev. A 87 043402Google Scholar

    [57]

    Song X K, Ai Q, Qiu J, Deng F G 2016 Phys. Rev. A 93 052324Google Scholar

    [58]

    Huang B H, Chen Y H, Wu Q C, Song J, Xia Y 2016 Laser Phys. Lett. 13 105202Google Scholar

    [59]

    Wu J L, Su S L, Ji X, Zhang S 2017 Ann. Phys. 386 34Google Scholar

    [60]

    Löw R, Weimer H, Nipper J, Balewski J B, Butscher B, Büchler H P, Pfau T 2012 J. Phys. B: At., Mol. Opt. Phys. 45 113001Google Scholar

    [61]

    Su S L, Sun L N, Liu B J, Yan L L, Yung M H, Li W, Feng M 2023 Phys. Rev. Appl. 19 044007Google Scholar

    [62]

    Du F F, Fan Z G, Ren X M, Ma M, Liu W Y 2024 Chin. Phys. B

    [63]

    Shao X Q 2020 Phys. Rev. A 102 053118Google Scholar

    [64]

    Facchi P, Pascazio S 2002 Phys. Rev. Lett. 89 080401Google Scholar

    [65]

    Wu J L, Song C, Xu J, Yu L, Ji X, Zhang S 2016 Quantum Inf. Process. 15 3663Google Scholar

    [66]

    Shore B W 2017 Adv. Opt. Photonics 9 563Google Scholar

    [67]

    Zhang X, Isenhower L, Gill A, Walker T, Saffman M 2010 Phys. Rev. A 82 030306Google Scholar

    [68]

    Isenhower L, Urban E, Zhang X, Gill A, Henage T, Johnson T A, Walker T, Saffman M 2010 Phys. Rev. Lett. 104 010503Google Scholar

    [69]

    Guerlin C, Brion E, Esslinger T, Mølmer K 2010 Phys. Rev. A 82 053832Google Scholar

    [70]

    Zhang X F, Sun Q, Wen Y C, Liu W M, Eggert S, Ji A C 2013 Phys. Rev. Lett. 110 090402Google Scholar

  • [1] Guo Peng-Liang, Xi Shun, Gao Cheng-Yan. Hyperentanglement W state concentration for polarization–time-bin photon systems with linear optics. Acta Physica Sinica, doi: 10.7498/aps.74.20241642
    [2] Wang Xue-Mei, Zhang An-Qi, Zhao Sheng-Mei. Implementation of controlled phase gate based on superadiabatic shortcut in circuit quantum electrodynamics. Acta Physica Sinica, doi: 10.7498/aps.71.20220248
    [3] Bai Wen-Jie, Yan Dong, Han Hai-Yan, Hua Shuo, Gu Kai-Hui. Correlated dynamics of three-body Rydberg superatoms. Acta Physica Sinica, doi: 10.7498/aps.71.20211284
    [4] Ji Yan-Qiang, Wang Jie, Liu Ying-Li, Zhang Da-Wei, Xiao Rui-Jie, Dong Li, Xiu Xiao-Ming. Fast generation of three-atom singlet state with Rydberg superatom. Acta Physica Sinica, doi: 10.7498/aps.70.20201841
    [5] Yu Wan-Rang, Ji Xin. Superadiabatic scheme for fast generating Greenberger-Horne-Zeilinger state of three superconducting qubits. Acta Physica Sinica, doi: 10.7498/aps.68.20181922
    [6] Zhao Jun-Long, Zhang Yi-Dan, Yang Ming. Influence of noice on tripartite quantum probe state. Acta Physica Sinica, doi: 10.7498/aps.67.20180040
    [7] Pei Dong-Liang, He Jun, Wang Jie-Ying, Wang Jia-Chao, Wang Jun-Min. Measurement of the fine structure of cesium Rydberg state. Acta Physica Sinica, doi: 10.7498/aps.66.193701
    [8] Luo Jin-Long, Ling Feng-Zi, Li Shuai, Wang Yan-Mei, Zhang Bing. Ultrafast photodissociation dynamics of butanone in 3s Rydberg state. Acta Physica Sinica, doi: 10.7498/aps.66.023301
    [9] Zhao Lei, Zhang Qi, Dong Jing-Wei, Lü Hang, Xu Hai-Feng. Rydberg state excitations and double ionizations of different atoms in strong femtosecond laser field. Acta Physica Sinica, doi: 10.7498/aps.65.223201
    [10] Li Jing-Kui, Yang Wen-Guang, Song Zhen-Fei, Zhang Hao, Zhang Lin-Jie, Zhao Jian-Ming, Jia Suo-Tang. Two-photon radio frequency spectroscopy of 49S Rydberg state. Acta Physica Sinica, doi: 10.7498/aps.64.163201
    [11] Huang Wei, Liang Zhen-Tao, Du Yan-Xiong, Yan Hui, Zhu Shi-Liang. Rydberg-atom-based electrometry. Acta Physica Sinica, doi: 10.7498/aps.64.160702
    [12] Fan Rong-Hua, Guo Bang-Hong, Guo Jian-Jun, Zhang Cheng-Xian, Zhang Wen-Jie, Du Ge. Entangled W state of multi degree of freedom system based on orbital angular momentum. Acta Physica Sinica, doi: 10.7498/aps.64.140301
    [13] Li Chang-Yong, Zhang Lin-Jie, Zhao Jian-Ming, Jia Suo-Tang. Measurement and theoretical calculation for Stark energy and electric dipole moment of Cs Rydberg state. Acta Physica Sinica, doi: 10.7498/aps.61.163202
    [14] Zhou Xiao-Qing, Wu Yun-Wen. Discussion on building the net of quantum teleportation using three-particle entangled states. Acta Physica Sinica, doi: 10.7498/aps.56.1881
    [15] Sun Jiang, Zuo Zhan-Chun, Guo Qing-Lin, Wang Ying-Long, Huai Su-Fang, Wang Ying, Fu Pan-Ming. Observation of Rydberg series of neutral barium by two-photon resonent nondegenerate four-wave mixing. Acta Physica Sinica, doi: 10.7498/aps.55.221
    [16] Huang Yong-Chang, Liu Min. General WGHZ state and its disentanglement and probabilistic teleportation. Acta Physica Sinica, doi: 10.7498/aps.54.4517
    [17] Dai Chang-Jian, Shu Xiao-Wu, Li Qian, Zhang Sen, Fang Da-Wei. . Acta Physica Sinica, doi: 10.7498/aps.44.678
    [18] ZHANG SEN, QIU JI-ZHEN, WANG GANG. LEVEL STRUCTURE OF THE RYDBERG STATES OF CALCIUM ATOM IN ELECTRIC FIELD. Acta Physica Sinica, doi: 10.7498/aps.38.481
    [19] HE XING-HONG, LI BAI-WEN, ZHANG CHENG-XIU. POLARIZABILITIES OF HIGH RYDBERG ALKALI ATOMS. Acta Physica Sinica, doi: 10.7498/aps.38.1717
    [20] ZHANG SEN, QIU JI-ZHEN, HU SU-FEN, LU JIE, ZHONG JIAN-WEI, LIANG YI, SUN JIA-ZHEN. ELECTRIC FIELD EFFECTS ON Sr ATOM RYDBERG STATES. Acta Physica Sinica, doi: 10.7498/aps.37.983
Metrics
  • Abstract views:  334
  • PDF Downloads:  19
  • Cited By: 0
Publishing process
  • Available Online:  20 March 2025

/

返回文章
返回
Baidu
map