-
The W state, as a robust multipartite entangled state, plays an important role in quantum information processing, quantum network construction and quantum computing. In this paper, the three-level ladder-type Rydberg atomic system is put into the Rydberg blocking ball to form a superatom. Each superatom has many collective states including just one Rydberg excitation constrained by the Rydberg blockade effect. In the weak cavity field limit, at most one atom can be pumped into excited state, then we can describe the superatom by a three-level ladder-type system. Afterwards we encode quantum information on the effective energy levels of Rydberg superatoms and propose a fast scheme for preparing the Rydberg superatom W state based on the superadiabatic iterative technique and quantum Zeno dynamics, this scheme can be achieved in only one step by controlling the laser pulses. In the current scheme, the superatoms are trapped in spatially separated cavities connected by optical fibers, which significantly enhances the feasibility of experimental manipulation. A remarkable feature is that it does not require precise control of experimental parameters and interaction time. Meanwhile, the form of counterdiabatic Hamiltonian is the same as that of the effective Hamiltonian. Through numerical simulations, the fidelity of this scheme can reach 99.94$\%$. Even considering decoherence effects, including atomic spontaneous emission and photon leakage, the fidelity can still exceed 97.5$\%$, further demonstrating the strong robustness of the solution. In addition, the Rabi frequency can be characterized as a linear superposition of Gaussian functions, this representation significantly alleviates the complexity encountered in practical experiments. Futhermore, we also analyzed the impact of parameter fluctuations on the fidelity, the results show that this scheme is robust against parameter fluctuations. At last, the present scheme is extended to the cases of $N$ Rydberg superatoms, which shows the scalability of our scheme.
-
Keywords:
- Superadiabatic /
- W state /
- Rydberg superatoms
-
[1] Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74145
[2] Markham D, Sanders B C 2008 Phys. Rev. A 78042309
[3] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 701895
[4] Luo Y H, Zhong H S, Erhard M, Wang X L, Peng L C, Krenn M, Jiang X, Li L, Liu N L, Lu C Y, et al. 2019 Phys. Rev. Lett. 123070505
[5] Xia Y, Song J, Lu P M, Song H S 2010 JOSA B 27 A1
[6] Ekert A K 1991 Phys. Rev. Lett. 67661
[7] Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68557
[8] Long G L, Liu X S 2002 Phys. Rev. A 65032302
[9] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 811301
[10] Briegel H J, Browne D E, Dür W, Raussendorf R, Van den Nest M 2009 Nat. Phys. 519
[11] Zhao P Z, Cui X D, Xu G, Sjöqvist E, Tong D 2017 Phys. Rev. A 96052316
[12] Su S L, Gao Y, Liang E, Zhang S 2017 Phys. Rev. A 95022319
[13] Wu J L, Su S L, Wang Y, Song J, Xia Y, Jiang Y Y 2020 Opt. Lett. 451200
[14] Li X H, Deng F G, Zhou H Y 2006 Phys. Rev. A 74054302
[15] Zhu A D, Xia Y, Fan Q B, Zhang S 2006 Phys. Rev. A 73022338
[16] Li T, Long G L 2020 New J. Phys. 22063017
[17] Greenberger D M, Horne M A, Zeilinger A 1989 In Bell’ s theorem, quantum theory and conceptions of the universe (Springer), pp 69–72
[18] Shao X Q, Liu F, Xue X W, Mu W, Li Wb 2023 Phys. Rev. Appl 20014014
[19] Dür W, Vidal G, Cirac J I 2000 Phys. Rev. A 62062314
[20] Cabello A 2002 Phys. Rev. A 65032108
[21] Agrawal P, Pati A 2006 Phys. Rev. A 74062320
[22] Wang A, Wei Y Z, Li Z Y, Jiang M 2023 IET Quantum Commun. 4200
[23] Renner R 2008 Int. J. Quantum Inf. 61
[24] Lo H K, Ma X, Chen K 2005 Phys. Rev. Lett. 94230504
[25] Lipinska V, Murta G, Wehner S 2018 Phys. Rev. A 98052320
[26] Miguel-Ramiro J, Riera-Sàbat F, Dür W 2023 PRX Quantum 4040323
[27] Su S L, Shao X Q, Wang H F, Zhang S 2014 Phys. Rev. A 90054302
[28] Han J X, Wu J L, Wang Y, Xia Y, Jiang Y Y, Song J 2021 Phys. Rev. A 103032402
[29] Shao X Q, Wang Z, Liu H, Yi X 2016 Phys. Rev. A 94032307
[30] Shao X Q, Su S L, Li L, Nath R, Wu J H, Li W 2024 Appl. Phys. Rev. 11
[31] Shao Q P, Wang J, Ji Y, Liu Y, Dong L, Xiu X M 2023 J. Opt. Soc. Am. B 41143
[32] Zhang W Y, Wang C Q, Ji Y Q, Shao Q P, Wang J P, Wang J, Yang L P, Dong L, Xiu X M 2024 Adv. Quantum Technol. 72300140
[33] Saffman M, Walker T G, Mølmer K 2010 Rev. Mod. Phys. 822313
[34] Beguin L, Vernier A, Chicireanu R, Lahaye T, Browaeys A 2013 Phys. Rev. Lett. 110263201
[35] Xing T, Zhao P, Tong D 2021 Phys. Rev. A 104012618
[36] Lukin M D, Fleischhauer M, Cote R, Duan L, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87037901
[37] Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D, Walker T, Saffman M 2009 Nat. Phys. 5110
[38] Gaëtan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nat. Phys. 5115
[39] Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P, Browaeys A 2010 Phys. Rev. Lett. 104010502
[40] Dudin Y O, Li L, Bariani F, Kuzmich A 2012 Nat. Phys. 8790
[41] Shao X Q, Wu J, Yi X 2017 Phys. Rev. A 95062339
[42] Su S L, Li W 2021 Phys. Rev. A 104033716
[43] Wu J L, Wang Y, Han J X, Su S L, Xia Y, Jiang Y, Song J 2021 Phys. Rev. A 103012601
[44] Zeiher J, Schauß P, Hild S, Macrì T, Bloch I, Gross C 2015 Phys. Rev. X 5031015
[45] Yang L, Wang J, Ji Y, Wang J, Zhang Z, Liu Y, Dong L, Xiu X 2024 Eur. Phys. J. Plus 1391
[46] Xu W, Venkatramani A V, Cantú S H, Šumarac T, Klüsener V, Lukin M D, Vuletić V 2021 Phys. Rev. Lett. 127050501
[47] Zhao P Z, Wu X, Xing T, Xu G, Tong D 2018 Phys. Rev. A 98032313
[48] Paris-Mandoki A, Braun C, Kumlin J, Tresp C, Mirgorodskiy I, Christaller F, Büchler H P, Hofferberth S 2017 Phys. Rev. X 7041010
[49] Liu Y L, Ji Y Q, Han X, Cui W X, Zhang S, Wang H F 2023 Adv. Quantum Technol. 62200173
[50] Baksic A, Ribeiro H, Clerk A A 2016 Phys. Rev. Lett. 116230503
[51] Wu J L, Ji X, Zhang S 2017 Sci. Rep. 746255
[52] Chen Y H, Qin W, Wang X, Miranowicz A, Nori F 2021 Phys. Rev. Lett. 126023602
[53] Giannelli L, Arimondo E 2014 Phys. Rev. A 89033419
[54] Wang X M, Zhang A Q, Zhao S M 2022 ACTA PHYSICA SINICA 71
[55] Berry M V 2009 J. Phys. A: Math. Theor. 42365303
[56] Ibáñez S, Chen X, Muga J 2013 Phys. Rev. A 87043402
[57] Song X K, Ai Q, Qiu J, Deng F G 2016 Phys. Rev. A 93052324
[58] Huang B H, Chen Y H, Wu Q C, Song J, Xia Y 2016 Laser Phys. Lett. 13105202
[59] Wu J L, Su S L, Ji X, Zhang S 2017 Ann. Phys. 38634
[60] Löw R, Weimer H, Nipper J, Balewski J B, Butscher B, Büchler H P, Pfau T 2012 J. Phys. B: At., Mol. Opt. Phys. 45113001
[61] Su S L, Sun L N, Liu B J, Yan L L, Yung M H, Li W, Feng M 2023 Phys. Rev. Appl. 19044007
[62] Du F F, Fan Z G, Ren X M, Ma M, Liu W Y 2024 Chin. Phys. B
[63] Shao X Q 2020 Phys. Rev. A 102053118
[64] Facchi P, Pascazio S 2002 Phys. Rev. Lett. 89080401
[65] Wu J L, Song C, Xu J, Yu L, Ji X, Zhang S 2016 Quantum Inf. Process. 153663
[66] Shore B W 2017 Adv. Opt. Photonics 9563
[67] Zhang X, Isenhower L, Gill A, Walker T, Saffman M 2010 Phys. Rev. A 82030306
[68] Isenhower L, Urban E, Zhang X, Gill A, Henage T, Johnson T A, Walker T, Saffman M 2010 Phys. Rev. Lett. 104010503
[69] Guerlin C, Brion E, Esslinger T, Mølmer K 2010 Phys. Rev. A 82053832
[70] Zhang X F, Sun Q, Wen Y C, Liu W M, Eggert S, Ji A C 2013 Phys. Rev. Lett. 110090402
Metrics
- Abstract views: 50
- PDF Downloads: 3
- Cited By: 0