Loading [MathJax]/jax/output/HTML-CSS/jax.js

搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超绝热技术快速制备里德堡超级原子W态

杨丽萍 王纪平 董莉 修晓明 计彦强

基于超绝热技术快速制备里德堡超级原子W态

杨丽萍, 王纪平, 董莉, 修晓明, 计彦强

Rapid Preparation of Rydberg Superatom W State Using Superadiabatic Techniques

YANG Liping, WANG Jiping, DONG Li, XIU Xiaoming, JI Yanqiang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • W态作为一种具有鲁棒性的多体纠缠态,在量子信息处理、量子网络构建以及量子计算等领域具有重要应用.本文借助里德堡超级原子的有效能级进行编码,运用超绝热迭代技术,提出一种快速制备里德堡超级原子W态的方案.该方案无需对实验参数和交互时间进行精确控制,且其反绝热哈密顿量与有效哈密顿量形式相同.数值模拟结果表明,此方案不仅能够快速制备W态,还具备较高的保真度和良好的实验可操作性.进一步的数值模拟分析显示,在面对原子自发辐射和光子泄漏引发的退相干问题时,该方案展现出较强的鲁棒性.此外,该方案可扩展至N个里德堡超级原子的情况,这展示了该技术在大规模多体纠缠态制备中的潜力.
    The W state, as a robust multipartite entangled state, plays an important role in quantum information processing, quantum network construction and quantum computing. In this paper, the three-level ladder-type Rydberg atomic system is put into the Rydberg blocking ball to form a superatom. Each superatom has many collective states including just one Rydberg excitation constrained by the Rydberg blockade effect. In the weak cavity field limit, at most one atom can be pumped into excited state, then we can describe the superatom by a three-level ladder-type system. Afterwards we encode quantum information on the effective energy levels of Rydberg superatoms and propose a fast scheme for preparing the Rydberg superatom W state based on the superadiabatic iterative technique and quantum Zeno dynamics, this scheme can be achieved in only one step by controlling the laser pulses. In the current scheme, the superatoms are trapped in spatially separated cavities connected by optical fibers, which significantly enhances the feasibility of experimental manipulation. A remarkable feature is that it does not require precise control of experimental parameters and interaction time. Meanwhile, the form of counterdiabatic Hamiltonian is the same as that of the effective Hamiltonian. Through numerical simulations, the fidelity of this scheme can reach 99.94%. Even considering decoherence effects, including atomic spontaneous emission and photon leakage, the fidelity can still exceed 97.5%, further demonstrating the strong robustness of the solution. In addition, the Rabi frequency can be characterized as a linear superposition of Gaussian functions, this representation significantly alleviates the complexity encountered in practical experiments. Futhermore, we also analyzed the impact of parameter fluctuations on the fidelity, the results show that this scheme is robust against parameter fluctuations. At last, the present scheme is extended to the cases of N Rydberg superatoms, which shows the scalability of our scheme.
      PACS:
  • [1]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74145

    [2]

    Markham D, Sanders B C 2008 Phys. Rev. A 78042309

    [3]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 701895

    [4]

    Luo Y H, Zhong H S, Erhard M, Wang X L, Peng L C, Krenn M, Jiang X, Li L, Liu N L, Lu C Y, et al. 2019 Phys. Rev. Lett. 123070505

    [5]

    Xia Y, Song J, Lu P M, Song H S 2010 JOSA B 27 A1

    [6]

    Ekert A K 1991 Phys. Rev. Lett. 67661

    [7]

    Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68557

    [8]

    Long G L, Liu X S 2002 Phys. Rev. A 65032302

    [9]

    Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 811301

    [10]

    Briegel H J, Browne D E, Dür W, Raussendorf R, Van den Nest M 2009 Nat. Phys. 519

    [11]

    Zhao P Z, Cui X D, Xu G, Sjöqvist E, Tong D 2017 Phys. Rev. A 96052316

    [12]

    Su S L, Gao Y, Liang E, Zhang S 2017 Phys. Rev. A 95022319

    [13]

    Wu J L, Su S L, Wang Y, Song J, Xia Y, Jiang Y Y 2020 Opt. Lett. 451200

    [14]

    Li X H, Deng F G, Zhou H Y 2006 Phys. Rev. A 74054302

    [15]

    Zhu A D, Xia Y, Fan Q B, Zhang S 2006 Phys. Rev. A 73022338

    [16]

    Li T, Long G L 2020 New J. Phys. 22063017

    [17]

    Greenberger D M, Horne M A, Zeilinger A 1989 In Bell’ s theorem, quantum theory and conceptions of the universe (Springer), pp 69–72

    [18]

    Shao X Q, Liu F, Xue X W, Mu W, Li Wb 2023 Phys. Rev. Appl 20014014

    [19]

    Dür W, Vidal G, Cirac J I 2000 Phys. Rev. A 62062314

    [20]

    Cabello A 2002 Phys. Rev. A 65032108

    [21]

    Agrawal P, Pati A 2006 Phys. Rev. A 74062320

    [22]

    Wang A, Wei Y Z, Li Z Y, Jiang M 2023 IET Quantum Commun. 4200

    [23]

    Renner R 2008 Int. J. Quantum Inf. 61

    [24]

    Lo H K, Ma X, Chen K 2005 Phys. Rev. Lett. 94230504

    [25]

    Lipinska V, Murta G, Wehner S 2018 Phys. Rev. A 98052320

    [26]

    Miguel-Ramiro J, Riera-Sàbat F, Dür W 2023 PRX Quantum 4040323

    [27]

    Su S L, Shao X Q, Wang H F, Zhang S 2014 Phys. Rev. A 90054302

    [28]

    Han J X, Wu J L, Wang Y, Xia Y, Jiang Y Y, Song J 2021 Phys. Rev. A 103032402

    [29]

    Shao X Q, Wang Z, Liu H, Yi X 2016 Phys. Rev. A 94032307

    [30]

    Shao X Q, Su S L, Li L, Nath R, Wu J H, Li W 2024 Appl. Phys. Rev. 11

    [31]

    Shao Q P, Wang J, Ji Y, Liu Y, Dong L, Xiu X M 2023 J. Opt. Soc. Am. B 41143

    [32]

    Zhang W Y, Wang C Q, Ji Y Q, Shao Q P, Wang J P, Wang J, Yang L P, Dong L, Xiu X M 2024 Adv. Quantum Technol. 72300140

    [33]

    Saffman M, Walker T G, Mølmer K 2010 Rev. Mod. Phys. 822313

    [34]

    Beguin L, Vernier A, Chicireanu R, Lahaye T, Browaeys A 2013 Phys. Rev. Lett. 110263201

    [35]

    Xing T, Zhao P, Tong D 2021 Phys. Rev. A 104012618

    [36]

    Lukin M D, Fleischhauer M, Cote R, Duan L, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87037901

    [37]

    Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D, Walker T, Saffman M 2009 Nat. Phys. 5110

    [38]

    Gaëtan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nat. Phys. 5115

    [39]

    Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P, Browaeys A 2010 Phys. Rev. Lett. 104010502

    [40]

    Dudin Y O, Li L, Bariani F, Kuzmich A 2012 Nat. Phys. 8790

    [41]

    Shao X Q, Wu J, Yi X 2017 Phys. Rev. A 95062339

    [42]

    Su S L, Li W 2021 Phys. Rev. A 104033716

    [43]

    Wu J L, Wang Y, Han J X, Su S L, Xia Y, Jiang Y, Song J 2021 Phys. Rev. A 103012601

    [44]

    Zeiher J, Schauß P, Hild S, Macrì T, Bloch I, Gross C 2015 Phys. Rev. X 5031015

    [45]

    Yang L, Wang J, Ji Y, Wang J, Zhang Z, Liu Y, Dong L, Xiu X 2024 Eur. Phys. J. Plus 1391

    [46]

    Xu W, Venkatramani A V, Cantú S H, Šumarac T, Klüsener V, Lukin M D, Vuletić V 2021 Phys. Rev. Lett. 127050501

    [47]

    Zhao P Z, Wu X, Xing T, Xu G, Tong D 2018 Phys. Rev. A 98032313

    [48]

    Paris-Mandoki A, Braun C, Kumlin J, Tresp C, Mirgorodskiy I, Christaller F, Büchler H P, Hofferberth S 2017 Phys. Rev. X 7041010

    [49]

    Liu Y L, Ji Y Q, Han X, Cui W X, Zhang S, Wang H F 2023 Adv. Quantum Technol. 62200173

    [50]

    Baksic A, Ribeiro H, Clerk A A 2016 Phys. Rev. Lett. 116230503

    [51]

    Wu J L, Ji X, Zhang S 2017 Sci. Rep. 746255

    [52]

    Chen Y H, Qin W, Wang X, Miranowicz A, Nori F 2021 Phys. Rev. Lett. 126023602

    [53]

    Giannelli L, Arimondo E 2014 Phys. Rev. A 89033419

    [54]

    Wang X M, Zhang A Q, Zhao S M 2022 ACTA PHYSICA SINICA 71

    [55]

    Berry M V 2009 J. Phys. A: Math. Theor. 42365303

    [56]

    Ibáñez S, Chen X, Muga J 2013 Phys. Rev. A 87043402

    [57]

    Song X K, Ai Q, Qiu J, Deng F G 2016 Phys. Rev. A 93052324

    [58]

    Huang B H, Chen Y H, Wu Q C, Song J, Xia Y 2016 Laser Phys. Lett. 13105202

    [59]

    Wu J L, Su S L, Ji X, Zhang S 2017 Ann. Phys. 38634

    [60]

    Löw R, Weimer H, Nipper J, Balewski J B, Butscher B, Büchler H P, Pfau T 2012 J. Phys. B: At., Mol. Opt. Phys. 45113001

    [61]

    Su S L, Sun L N, Liu B J, Yan L L, Yung M H, Li W, Feng M 2023 Phys. Rev. Appl. 19044007

    [62]

    Du F F, Fan Z G, Ren X M, Ma M, Liu W Y 2024 Chin. Phys. B

    [63]

    Shao X Q 2020 Phys. Rev. A 102053118

    [64]

    Facchi P, Pascazio S 2002 Phys. Rev. Lett. 89080401

    [65]

    Wu J L, Song C, Xu J, Yu L, Ji X, Zhang S 2016 Quantum Inf. Process. 153663

    [66]

    Shore B W 2017 Adv. Opt. Photonics 9563

    [67]

    Zhang X, Isenhower L, Gill A, Walker T, Saffman M 2010 Phys. Rev. A 82030306

    [68]

    Isenhower L, Urban E, Zhang X, Gill A, Henage T, Johnson T A, Walker T, Saffman M 2010 Phys. Rev. Lett. 104010503

    [69]

    Guerlin C, Brion E, Esslinger T, Mølmer K 2010 Phys. Rev. A 82053832

    [70]

    Zhang X F, Sun Q, Wen Y C, Liu W M, Eggert S, Ji A C 2013 Phys. Rev. Lett. 110090402

  • [1] 沈星晨, 刘洋, 陈淇, 吕航, 徐海峰. 超快强激光场中原子分子的里德伯态激发.  , doi: 10.7498/aps.71.20221258
    [2] 王雪梅, 张安琪, 赵生妹. 电路量子电动力学中基于超绝热捷径的控制相位门实现.  , doi: 10.7498/aps.71.20220248
    [3] 白文杰, 严冬, 韩海燕, 华硕, 谷开慧. 三体里德堡超级原子的关联动力学研究.  , doi: 10.7498/aps.71.20211284
    [4] 计彦强, 王洁, 刘颖莉, 张大伟, 肖瑞杰, 董莉, 修晓明. 基于里德伯超级原子快速制备三粒子单重态.  , doi: 10.7498/aps.70.20201841
    [5] 于宛让, 计新. 基于超绝热捷径技术快速制备超导三量子比特Greenberger-Horne-Zeilinger态.  , doi: 10.7498/aps.68.20181922
    [6] 赵军龙, 张译丹, 杨名. 噪声对一种三粒子量子探针态的影响.  , doi: 10.7498/aps.67.20180040
    [7] 裴栋梁, 何军, 王杰英, 王家超, 王军民. 铯原子里德伯态精细结构测量.  , doi: 10.7498/aps.66.193701
    [8] 罗金龙, 凌丰姿, 李帅, 王艳梅, 张冰. 丁酮3s里德堡态的超快光解动力学研究.  , doi: 10.7498/aps.66.023301
    [9] 赵磊, 张琦, 董敬伟, 吕航, 徐海峰. 不同原子在飞秒强激光场中的里德堡态激发和双电离.  , doi: 10.7498/aps.65.223201
    [10] 李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂. 49S里德堡态的射频双光子光谱.  , doi: 10.7498/aps.64.163201
    [11] 黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮. 基于里德堡原子的电场测量.  , doi: 10.7498/aps.64.160702
    [12] 范榕华, 郭邦红, 郭建军, 张程贤, 张文杰, 杜戈. 基于轨道角动量的多自由度W态纠缠系统.  , doi: 10.7498/aps.64.140301
    [13] 李昌勇, 张临杰, 赵建明, 贾锁堂. 铯原子里德堡态Stark能量及电偶极矩的测量和理论计算.  , doi: 10.7498/aps.61.163202
    [14] 周小清, 邬云文. 利用三粒子纠缠态建立量子隐形传态网络的探讨.  , doi: 10.7498/aps.56.1881
    [15] 孙 江, 左战春, 郭庆林, 王英龙, 怀素芳, 王 颖, 傅盘铭. 应用双光子共振非简并四波混频测量Ba原子里德伯态.  , doi: 10.7498/aps.55.221
    [16] 黄永畅, 刘 敏. 一般WGHZ态和它的退纠缠与概率隐形传态.  , doi: 10.7498/aps.54.4517
    [17] 戴长建, 舒晓武, 郦菁, 张森, 方达渭. Yb原子里德伯态及价态的场电离阈.  , doi: 10.7498/aps.44.678
    [18] 张森, 邱济真, 王刚. 静电场中Ca原子里德堡态的能级结构.  , doi: 10.7498/aps.38.481
    [19] 何兴虹, 李白文, 张承修. 碱原子高里德堡态的极化率.  , doi: 10.7498/aps.38.1717
    [20] 张森, 邱济真, 胡素芬, 陆杰, 钟建伟, 梁宜, 孙家祯. Sr原子里德堡态的电场效应.  , doi: 10.7498/aps.37.983
计量
  • 文章访问数:  92
  • PDF下载量:  8
出版历程
  • 上网日期:  2025-03-20

/

返回文章
返回
Baidu
map