-
W态作为一种具有鲁棒性的多体纠缠态,在量子信息处理、量子网络构建以及量子计算等领域具有重要应用.本文借助里德堡超级原子的有效能级进行编码,运用超绝热迭代技术,提出一种快速制备里德堡超级原子W态的方案.该方案无需对实验参数和交互时间进行精确控制,且其反绝热哈密顿量与有效哈密顿量形式相同.数值模拟结果表明,此方案不仅能够快速制备W态,还具备较高的保真度和良好的实验可操作性.进一步的数值模拟分析显示,在面对原子自发辐射和光子泄漏引发的退相干问题时,该方案展现出较强的鲁棒性.此外,该方案可扩展至N个里德堡超级原子的情况,这展示了该技术在大规模多体纠缠态制备中的潜力.The W state, as a robust multipartite entangled state, plays an important role in quantum information processing, quantum network construction and quantum computing. In this paper, the three-level ladder-type Rydberg atomic system is put into the Rydberg blocking ball to form a superatom. Each superatom has many collective states including just one Rydberg excitation constrained by the Rydberg blockade effect. In the weak cavity field limit, at most one atom can be pumped into excited state, then we can describe the superatom by a three-level ladder-type system. Afterwards we encode quantum information on the effective energy levels of Rydberg superatoms and propose a fast scheme for preparing the Rydberg superatom W state based on the superadiabatic iterative technique and quantum Zeno dynamics, this scheme can be achieved in only one step by controlling the laser pulses. In the current scheme, the superatoms are trapped in spatially separated cavities connected by optical fibers, which significantly enhances the feasibility of experimental manipulation. A remarkable feature is that it does not require precise control of experimental parameters and interaction time. Meanwhile, the form of counterdiabatic Hamiltonian is the same as that of the effective Hamiltonian. Through numerical simulations, the fidelity of this scheme can reach 99.94%. Even considering decoherence effects, including atomic spontaneous emission and photon leakage, the fidelity can still exceed 97.5%, further demonstrating the strong robustness of the solution. In addition, the Rabi frequency can be characterized as a linear superposition of Gaussian functions, this representation significantly alleviates the complexity encountered in practical experiments. Futhermore, we also analyzed the impact of parameter fluctuations on the fidelity, the results show that this scheme is robust against parameter fluctuations. At last, the present scheme is extended to the cases of N Rydberg superatoms, which shows the scalability of our scheme.
-
Keywords:
- Superadiabatic /
- W state /
- Rydberg superatoms
-
[1] Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74145
[2] Markham D, Sanders B C 2008 Phys. Rev. A 78042309
[3] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 701895
[4] Luo Y H, Zhong H S, Erhard M, Wang X L, Peng L C, Krenn M, Jiang X, Li L, Liu N L, Lu C Y, et al. 2019 Phys. Rev. Lett. 123070505
[5] Xia Y, Song J, Lu P M, Song H S 2010 JOSA B 27 A1
[6] Ekert A K 1991 Phys. Rev. Lett. 67661
[7] Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68557
[8] Long G L, Liu X S 2002 Phys. Rev. A 65032302
[9] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 811301
[10] Briegel H J, Browne D E, Dür W, Raussendorf R, Van den Nest M 2009 Nat. Phys. 519
[11] Zhao P Z, Cui X D, Xu G, Sjöqvist E, Tong D 2017 Phys. Rev. A 96052316
[12] Su S L, Gao Y, Liang E, Zhang S 2017 Phys. Rev. A 95022319
[13] Wu J L, Su S L, Wang Y, Song J, Xia Y, Jiang Y Y 2020 Opt. Lett. 451200
[14] Li X H, Deng F G, Zhou H Y 2006 Phys. Rev. A 74054302
[15] Zhu A D, Xia Y, Fan Q B, Zhang S 2006 Phys. Rev. A 73022338
[16] Li T, Long G L 2020 New J. Phys. 22063017
[17] Greenberger D M, Horne M A, Zeilinger A 1989 In Bell’ s theorem, quantum theory and conceptions of the universe (Springer), pp 69–72
[18] Shao X Q, Liu F, Xue X W, Mu W, Li Wb 2023 Phys. Rev. Appl 20014014
[19] Dür W, Vidal G, Cirac J I 2000 Phys. Rev. A 62062314
[20] Cabello A 2002 Phys. Rev. A 65032108
[21] Agrawal P, Pati A 2006 Phys. Rev. A 74062320
[22] Wang A, Wei Y Z, Li Z Y, Jiang M 2023 IET Quantum Commun. 4200
[23] Renner R 2008 Int. J. Quantum Inf. 61
[24] Lo H K, Ma X, Chen K 2005 Phys. Rev. Lett. 94230504
[25] Lipinska V, Murta G, Wehner S 2018 Phys. Rev. A 98052320
[26] Miguel-Ramiro J, Riera-Sàbat F, Dür W 2023 PRX Quantum 4040323
[27] Su S L, Shao X Q, Wang H F, Zhang S 2014 Phys. Rev. A 90054302
[28] Han J X, Wu J L, Wang Y, Xia Y, Jiang Y Y, Song J 2021 Phys. Rev. A 103032402
[29] Shao X Q, Wang Z, Liu H, Yi X 2016 Phys. Rev. A 94032307
[30] Shao X Q, Su S L, Li L, Nath R, Wu J H, Li W 2024 Appl. Phys. Rev. 11
[31] Shao Q P, Wang J, Ji Y, Liu Y, Dong L, Xiu X M 2023 J. Opt. Soc. Am. B 41143
[32] Zhang W Y, Wang C Q, Ji Y Q, Shao Q P, Wang J P, Wang J, Yang L P, Dong L, Xiu X M 2024 Adv. Quantum Technol. 72300140
[33] Saffman M, Walker T G, Mølmer K 2010 Rev. Mod. Phys. 822313
[34] Beguin L, Vernier A, Chicireanu R, Lahaye T, Browaeys A 2013 Phys. Rev. Lett. 110263201
[35] Xing T, Zhao P, Tong D 2021 Phys. Rev. A 104012618
[36] Lukin M D, Fleischhauer M, Cote R, Duan L, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87037901
[37] Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D, Walker T, Saffman M 2009 Nat. Phys. 5110
[38] Gaëtan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nat. Phys. 5115
[39] Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P, Browaeys A 2010 Phys. Rev. Lett. 104010502
[40] Dudin Y O, Li L, Bariani F, Kuzmich A 2012 Nat. Phys. 8790
[41] Shao X Q, Wu J, Yi X 2017 Phys. Rev. A 95062339
[42] Su S L, Li W 2021 Phys. Rev. A 104033716
[43] Wu J L, Wang Y, Han J X, Su S L, Xia Y, Jiang Y, Song J 2021 Phys. Rev. A 103012601
[44] Zeiher J, Schauß P, Hild S, Macrì T, Bloch I, Gross C 2015 Phys. Rev. X 5031015
[45] Yang L, Wang J, Ji Y, Wang J, Zhang Z, Liu Y, Dong L, Xiu X 2024 Eur. Phys. J. Plus 1391
[46] Xu W, Venkatramani A V, Cantú S H, Šumarac T, Klüsener V, Lukin M D, Vuletić V 2021 Phys. Rev. Lett. 127050501
[47] Zhao P Z, Wu X, Xing T, Xu G, Tong D 2018 Phys. Rev. A 98032313
[48] Paris-Mandoki A, Braun C, Kumlin J, Tresp C, Mirgorodskiy I, Christaller F, Büchler H P, Hofferberth S 2017 Phys. Rev. X 7041010
[49] Liu Y L, Ji Y Q, Han X, Cui W X, Zhang S, Wang H F 2023 Adv. Quantum Technol. 62200173
[50] Baksic A, Ribeiro H, Clerk A A 2016 Phys. Rev. Lett. 116230503
[51] Wu J L, Ji X, Zhang S 2017 Sci. Rep. 746255
[52] Chen Y H, Qin W, Wang X, Miranowicz A, Nori F 2021 Phys. Rev. Lett. 126023602
[53] Giannelli L, Arimondo E 2014 Phys. Rev. A 89033419
[54] Wang X M, Zhang A Q, Zhao S M 2022 ACTA PHYSICA SINICA 71
[55] Berry M V 2009 J. Phys. A: Math. Theor. 42365303
[56] Ibáñez S, Chen X, Muga J 2013 Phys. Rev. A 87043402
[57] Song X K, Ai Q, Qiu J, Deng F G 2016 Phys. Rev. A 93052324
[58] Huang B H, Chen Y H, Wu Q C, Song J, Xia Y 2016 Laser Phys. Lett. 13105202
[59] Wu J L, Su S L, Ji X, Zhang S 2017 Ann. Phys. 38634
[60] Löw R, Weimer H, Nipper J, Balewski J B, Butscher B, Büchler H P, Pfau T 2012 J. Phys. B: At., Mol. Opt. Phys. 45113001
[61] Su S L, Sun L N, Liu B J, Yan L L, Yung M H, Li W, Feng M 2023 Phys. Rev. Appl. 19044007
[62] Du F F, Fan Z G, Ren X M, Ma M, Liu W Y 2024 Chin. Phys. B
[63] Shao X Q 2020 Phys. Rev. A 102053118
[64] Facchi P, Pascazio S 2002 Phys. Rev. Lett. 89080401
[65] Wu J L, Song C, Xu J, Yu L, Ji X, Zhang S 2016 Quantum Inf. Process. 153663
[66] Shore B W 2017 Adv. Opt. Photonics 9563
[67] Zhang X, Isenhower L, Gill A, Walker T, Saffman M 2010 Phys. Rev. A 82030306
[68] Isenhower L, Urban E, Zhang X, Gill A, Henage T, Johnson T A, Walker T, Saffman M 2010 Phys. Rev. Lett. 104010503
[69] Guerlin C, Brion E, Esslinger T, Mølmer K 2010 Phys. Rev. A 82053832
[70] Zhang X F, Sun Q, Wen Y C, Liu W M, Eggert S, Ji A C 2013 Phys. Rev. Lett. 110090402
计量
- 文章访问数: 92
- PDF下载量: 8