-
The multipactor effect has to be dealt with seriously when designing and manufacturing high power microwave devices used in space, as it will cause inreversible damage to devices and hence the whole system fails to work. Lowering the secondary electron yield of device surface is an effective way to suppress multipactor effect, which can be realized by creating trapping structure or depositing nonmetallic materials with low secondary electron yield on the surface. However, these treatments will result in electrical performance changing even to an unacceptable extent in some cases. To solve this problem, the deposited materials with conductivity as good as metals' should be used, besides, they should be chemically inactive in air. Taking the above into account, the method of suppressing the secondary electron yield of silver plated surface of device by magnetron sputtering platinum is proposed and investigated in the present paper. Firstly, platinum film with a thickness of 100 nm is deposited on silver plated aluminum alloy substrates by magnetron sputtering, and secondary electron yields of substrates with and without deposited platinum film are measured with the bias current method. The experimental results indicate that the maximum value of secondary electron yield and the first cross energy of silver plated aluminum alloy sample are 2.40 and 30 eV, respectively. After depositing platinum film on sample, these values change to 1.77 and 70 eV, a reduction of 26% in maximum of secondary electron yield is achieved. Secondly, universal law, Vaughan model, Furman model and Scholtz model are used to fit the experimental data of secondary electron yield, and the results indicate that only Vaughan model accords well with the property of secondary electron yield in an energy range of 40-1500 eV, and corresponding parameters are also obtained. The Chung-Everhart model is used to fit the secondary electron spectrum curve, and the fitted work function is 9.9 eV. Finally, the simulation of multipactor threshold of Ku-band impedance transformer is carried out by using a software with utilizing the experimental data and fitted results of secondary electron emission of samples. The simulation results indicate that the multipactor thresholds by utilizing the data of samples with and without platinum are 7500 W and 36000 W, respectively, which means that the large increase of multipactor threshold of high power microwave device can be achieved by depositing platinum film on the surface. The method proposed and results obtained in the present work provide a reference not only for studying the secondary electron emission of metal, but also for suppressing the multipactor effect of high power microwave device.
-
Keywords:
- secondary electron yield /
- multipactor effect /
- metallic film /
- platinum
[1] Chung M S 1974 J. Appl. Phys. 45 707
[2] Ding Z J, Tang X D, Shimizu R 2001 J. Appl. Phys. 89 718
[3] Xie A G, Zhang J, Liu B, Wang T B 2012 High Power Laser and Particle Beams 24 481 (in Chinese)[谢爱根, 张健, 刘斌, 王铁邦 2012 强激光与粒子束 24 481]
[4] Chang T H, Zheng J R 2012 Acta Phys. Sin. 61 241401 (in Chinese)[常天海, 郑俊荣 2012 61 241401]
[5] Cheng S B, Deng S Q, Yuan W J, Yan Y J, Li J, Li J Q, Zhu J 2015 Appl. Phys. Lett. 107 032901
[6] Yang J, Cui W Z, Li Y, Xie G B, Zhang N, Wang R, Hu T C, Zhang H T 2016 Appl. Surf. Sci. 382 88
[7] Lin Y H, David C J 2005 Surf. Interface Anal. 37 895
[8] Cazaux J 2010 Ultramicroscopy 110 242
[9] Cazaux J 2012 J. Electron Microsc. 61 261
[10] Cheng H, Jiang J P 1986 Cathode Electronics (Xian:Northwest Telecommunication Engineering Institute Press) p164 (in Chinese)[承欢, 江剑平1986 阴极电子学(西安:西北电讯工程学院出版) 第164页]
[11] Stratakis D, Gallardo J C, Palmer R B 2010 Nucl. Instrum. Meth. A 620 147
[12] Ding M Q, Huang M G, Feng J J, Bai G D, Li X H, Zhao Q P, Liu M H, Gao Y J, Chen Q L 2009 Chin. J. Vac. Sci. Technol. 29 247 (in Chinese)[丁明清, 黄明光, 冯进军, 白国栋, 李兴辉, 赵青平, 刘明辉, 高玉娟, 陈其略 2009 真空科学与技术学报 29 247]
[13] Zhang N, Cui W Z, Hu T C, Wang X B 2011 Space Elec. Tech. 08 38 (in Chinese)[张娜, 崔万照, 胡天存, 王新波 2011 空间电子技术 08 38]
[14] Ye M, He Y N, Hu S G, Wang R, Hu T C, Yang J, Cui W Z 2013 J. Appl. Phys. 113 074904
[15] Nistora V, Gonzleza L A, Aguilera L, Montero I, Galn L, Wochner U, Raboso D 2014 Appl. Surf. Sci. 315 445
[16] Ye M, He Y N, Wang R, Hu T C, Zhang N, Yang J, Cui W Z, Zhang Z B 2014 Acta Phys. Sin. 63 147901 (in Chinese)[叶鸣, 贺永宁, 王瑞, 胡天存, 张娜, 杨晶, 崔万照, 张忠兵 2014 63 147901]
[17] Montero I, Aguilera L, Dvilaa M E, Nistor V C, Gonzlez L A, Galn L, Raboso D, Ferrittoet R 2014 Appl. Surf. Sci. 291 74
[18] Cao M, Zhang X S, Liu W H, Wang H G, Li Y D 2017 Diam. Relat. Mater. 73 199
[19] Cazaux J 2010 Appl. Surf. Sci. 257 1002
[20] Zhang N, Cao M, Cui W Z, Zhang H B 2014 Chin. J. Vac. Sci. Technol. 34 554 (in Chinese)[张娜, 曹猛, 崔万照, 张海波 2014 真空科学与技术学报 34 554]
[21] Li Y, Cui W Z, Wang H G 2015 Phys. Plasmas 22 053108
[22] Young J R 1957 J. Appl. Phys. 28 524
[23] Lye R G, Dekker A J 1957 Phys. Rev. 107 977
[24] Vaughan J R M 1993 IEEE Trans. Electron Dev. 40 830
[25] Furman M A, Pivi M T F 2002 Phys. Rev. Top-AC 5 124404
[26] Scholtz J J, Dijkkamp D, Schmitz R W A 1996 Philips J. Res. 50 375
[27] Lane R O, Zaffarano D I 1954 Phys. Rev. 94 960
[28] Zhang H B, Hu X C, Cao M, Zhang N, Cui W Z 2014 Vacuum 102 12
-
[1] Chung M S 1974 J. Appl. Phys. 45 707
[2] Ding Z J, Tang X D, Shimizu R 2001 J. Appl. Phys. 89 718
[3] Xie A G, Zhang J, Liu B, Wang T B 2012 High Power Laser and Particle Beams 24 481 (in Chinese)[谢爱根, 张健, 刘斌, 王铁邦 2012 强激光与粒子束 24 481]
[4] Chang T H, Zheng J R 2012 Acta Phys. Sin. 61 241401 (in Chinese)[常天海, 郑俊荣 2012 61 241401]
[5] Cheng S B, Deng S Q, Yuan W J, Yan Y J, Li J, Li J Q, Zhu J 2015 Appl. Phys. Lett. 107 032901
[6] Yang J, Cui W Z, Li Y, Xie G B, Zhang N, Wang R, Hu T C, Zhang H T 2016 Appl. Surf. Sci. 382 88
[7] Lin Y H, David C J 2005 Surf. Interface Anal. 37 895
[8] Cazaux J 2010 Ultramicroscopy 110 242
[9] Cazaux J 2012 J. Electron Microsc. 61 261
[10] Cheng H, Jiang J P 1986 Cathode Electronics (Xian:Northwest Telecommunication Engineering Institute Press) p164 (in Chinese)[承欢, 江剑平1986 阴极电子学(西安:西北电讯工程学院出版) 第164页]
[11] Stratakis D, Gallardo J C, Palmer R B 2010 Nucl. Instrum. Meth. A 620 147
[12] Ding M Q, Huang M G, Feng J J, Bai G D, Li X H, Zhao Q P, Liu M H, Gao Y J, Chen Q L 2009 Chin. J. Vac. Sci. Technol. 29 247 (in Chinese)[丁明清, 黄明光, 冯进军, 白国栋, 李兴辉, 赵青平, 刘明辉, 高玉娟, 陈其略 2009 真空科学与技术学报 29 247]
[13] Zhang N, Cui W Z, Hu T C, Wang X B 2011 Space Elec. Tech. 08 38 (in Chinese)[张娜, 崔万照, 胡天存, 王新波 2011 空间电子技术 08 38]
[14] Ye M, He Y N, Hu S G, Wang R, Hu T C, Yang J, Cui W Z 2013 J. Appl. Phys. 113 074904
[15] Nistora V, Gonzleza L A, Aguilera L, Montero I, Galn L, Wochner U, Raboso D 2014 Appl. Surf. Sci. 315 445
[16] Ye M, He Y N, Wang R, Hu T C, Zhang N, Yang J, Cui W Z, Zhang Z B 2014 Acta Phys. Sin. 63 147901 (in Chinese)[叶鸣, 贺永宁, 王瑞, 胡天存, 张娜, 杨晶, 崔万照, 张忠兵 2014 63 147901]
[17] Montero I, Aguilera L, Dvilaa M E, Nistor V C, Gonzlez L A, Galn L, Raboso D, Ferrittoet R 2014 Appl. Surf. Sci. 291 74
[18] Cao M, Zhang X S, Liu W H, Wang H G, Li Y D 2017 Diam. Relat. Mater. 73 199
[19] Cazaux J 2010 Appl. Surf. Sci. 257 1002
[20] Zhang N, Cao M, Cui W Z, Zhang H B 2014 Chin. J. Vac. Sci. Technol. 34 554 (in Chinese)[张娜, 曹猛, 崔万照, 张海波 2014 真空科学与技术学报 34 554]
[21] Li Y, Cui W Z, Wang H G 2015 Phys. Plasmas 22 053108
[22] Young J R 1957 J. Appl. Phys. 28 524
[23] Lye R G, Dekker A J 1957 Phys. Rev. 107 977
[24] Vaughan J R M 1993 IEEE Trans. Electron Dev. 40 830
[25] Furman M A, Pivi M T F 2002 Phys. Rev. Top-AC 5 124404
[26] Scholtz J J, Dijkkamp D, Schmitz R W A 1996 Philips J. Res. 50 375
[27] Lane R O, Zaffarano D I 1954 Phys. Rev. 94 960
[28] Zhang H B, Hu X C, Cao M, Zhang N, Cui W Z 2014 Vacuum 102 12
Catalog
Metrics
- Abstract views: 7659
- PDF Downloads: 142
- Cited By: 0