-
To suppress the secondary electron multipactor on dielectric surfaces of a dielectric load accelerator under an electromagnetic field in TM mode, the method of adopting both groove structure and external axial magnetic field is introduced. As the electric field distribution of the TM mode is composed of both normal and tangential components, it is different from that under the condition of dielectric window in HPM. Thus, theoretical analysis and numerical simulation are employed to study the movement of electrons under different conditions: such as dielectric surface shapes, electric field strength, and magnetic field strength etc. Based on the particle-in-cell (PIC) simulation, the collision energy and transmit-duration of secondary electrons in different groove structures and axial magnetic fields are compared with one another. Results show that the magnetic field is useful for suppressing the development of secondary electron on dielectric surface, while it is not very efficient under high electric field strength. The method of introducing groove structure and certain axial magnetic field on dielectric surface at the same time is capable of affecting the movement of electrons in electric field of different strength. So it is great helpful in improving the ability of multipactor suppression, which is significant for improving the threshold of breakdown on dielectric surface and the power of cavity. However, a too high or too low magnetic field is not very useful for the suppression of multipactor. Furthermore, employing only one of the two parts of the method is also less effective in suppressing the multipactor.
-
Keywords:
- dielectric load accelerator /
- TM mode /
- secondary electron multipactor /
- breakdown
[1] Thompson M C, Badakov H, Cook A M, Rosenzweig J B, Tikhoplav R, Travish G, Blumenfeld I, Hogan M J, Ischebeck R, Kirby N 2008 Phys. Rev. Lett. 100 214801
[2] Power J G, Gai W, Gold S H, Kinkead A K, Konecny R, Jing C, Liu W, Yusof Z 2004 Phys. Rev. Lett. 92 164801
[3] Ang L, Lau Y, Kishek R, Gilgenbach RP 1998 IEEE Trans. Plasma Sci. 26 290
[4] Wang J G, Cai L B, Zhu X Q, Wang Y, Xuan C 2010 Phys. Plasmas 17 063503
[5] Hao X W, Song B P, Zhang G J 2012 High Power Laser and Particle Beams 24 16 (in Chinese) [郝西伟, 宋佰鹏, 张冠军 2012 强激光与粒子束 24 16]
[6] Qiu S, Hao X W, Zhang G J, Liu G Z, Hou Q, Huang W H, Zhang Z Q, Zhu X X 2010 IEEE Transactions on Dielectrics and Electrical Insulation 17 1070
[7] Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Physica Sinica 63 027901 (in Chinese) [董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 63 027901]
[8] Jing C, Gai W, Power J G, Konecny R, Gold S H, Liu W, Kinkead A K 2005 IEEE Trans. Plasma Sci. 33 1155
[9] Jing C, Gai W, Power J G, Konecny R, Liu W, Gold S H, Kinkead A K, Tantawi S G, Dolgashev V, Kanareykin A 2010 IEEE Trans. Plasma Sci. 38 1354-
[10] Kishek R, Lau Y, Valfells A, Ang L K, Gilgenbach R M 1998 Phys. Plasmas 5 2120
[11] Chang C, Verboncoeur J, Tantawi1 S, Jing C 2011 J. Appl. Phys. 110 063304
[12] Cai L B, Wang J G, Zhu X Q, Wang Y, Xuan C, Xia H F 2012 Acta Phys. Sin. 61 075101 (in Chinese) [蔡利兵, 王建国, 朱湘琴, 王玥, 宣春, 夏洪富 2012 61 075101]
[13] Cai L B, Wang J G, ZhuX Q 2011 Phys. Plasmas 18 7
[14] Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2013 High Power Laser and Particle Beams 25 2653 (in Chinese) [董烨, 董志伟, 周前红, 杨温渊, 周海京 2013 强激光与粒子束 25 2653]
[15] Kim H, Verboncoeur J 2006 Phys. Plasmas 13 123506
[16] Neuber A, Dickens J, Hemmert D, Krompholz H, Hatfield L, Kristiansen M 1998 IEEE Trans. Plasma Sci. 26 296
[17] Chang C, Huang H J, Liu G Z, Chen C H, Hou Q, Fang J Y 2009 J. Appl. Phys. 105 123305
[18] Chang C, Liu G Z, Huang H J, Chen C H, Fang J Y 2009 Phys. Plasmas 16 083501
[19] Dong Y, Dong Z W, Yang W Y, Zhou Q H, Zhou H J 2013 High Power Laser and Particle Beams 25 399 (in Chinese) [董烨, 董志伟, 杨温渊, 周前红, 周海京 2013 强激光与粒子束 25 399]
[20] Chen C H, Chang C, Liu W Y, Sun J 2013 Journal of Applied Physics 114 163304
[21] Chang C, Liu G Z, Fang J Y, Tang C X, Huang H J, Chen C H 2010 Laser Part. Beams 28 185
[22] Li S, Chang C, Wang J G, Zhu M, Peng J C 2013 Phys. Plasmas 20 123502
[23] Song B P, Fan Z Z, Su G Q, Mu H B, Zhang G J, Liu C L 2014 High Power Laser and Particle Beams 26 065008 (in Chinese) [宋佰鹏, 范壮壮, 苏国强, 穆海宝, 张冠军, 刘纯亮 2014 强激光与粒子束 26 065008]
[24] Hao X W, Zhang G J, Qiu S, Huang W H, Liu G Z 2010 IEEE Trans. Plasma Sci. 38 1403
[25] Power J, Gai W, Gold S, Kinkead A, Konecny R, Jing C, Liu W, Yusof Z 2007 Phys. Rev. Lett. 92 164801
[26] Wu L, Ang L 2007 Phys. Plasmas 14 013105
[27] Wang J G, Zhang D H, Liu C L, Li Y D, Wang Y, Wang H G, Qiao H L, Li X Z 2009 Phys. Plasmas 16 033108
[28] Wang J G, Wang Y, Zhang D H 2006 IEEE Trans. Plasma Sci. 34 681
[29] Wang J G, Chen Z G, Wang Y, Zhang D H, Liu C L 2010 Phys. Plasmas 17 073107
[30] Li Y D, Yang W J, Zhang N, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 077901 (in Chinese) [李永东, 杨文晋, 张娜, 崔万照, 刘纯亮 2013 62 077901]
-
[1] Thompson M C, Badakov H, Cook A M, Rosenzweig J B, Tikhoplav R, Travish G, Blumenfeld I, Hogan M J, Ischebeck R, Kirby N 2008 Phys. Rev. Lett. 100 214801
[2] Power J G, Gai W, Gold S H, Kinkead A K, Konecny R, Jing C, Liu W, Yusof Z 2004 Phys. Rev. Lett. 92 164801
[3] Ang L, Lau Y, Kishek R, Gilgenbach RP 1998 IEEE Trans. Plasma Sci. 26 290
[4] Wang J G, Cai L B, Zhu X Q, Wang Y, Xuan C 2010 Phys. Plasmas 17 063503
[5] Hao X W, Song B P, Zhang G J 2012 High Power Laser and Particle Beams 24 16 (in Chinese) [郝西伟, 宋佰鹏, 张冠军 2012 强激光与粒子束 24 16]
[6] Qiu S, Hao X W, Zhang G J, Liu G Z, Hou Q, Huang W H, Zhang Z Q, Zhu X X 2010 IEEE Transactions on Dielectrics and Electrical Insulation 17 1070
[7] Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Physica Sinica 63 027901 (in Chinese) [董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 63 027901]
[8] Jing C, Gai W, Power J G, Konecny R, Gold S H, Liu W, Kinkead A K 2005 IEEE Trans. Plasma Sci. 33 1155
[9] Jing C, Gai W, Power J G, Konecny R, Liu W, Gold S H, Kinkead A K, Tantawi S G, Dolgashev V, Kanareykin A 2010 IEEE Trans. Plasma Sci. 38 1354-
[10] Kishek R, Lau Y, Valfells A, Ang L K, Gilgenbach R M 1998 Phys. Plasmas 5 2120
[11] Chang C, Verboncoeur J, Tantawi1 S, Jing C 2011 J. Appl. Phys. 110 063304
[12] Cai L B, Wang J G, Zhu X Q, Wang Y, Xuan C, Xia H F 2012 Acta Phys. Sin. 61 075101 (in Chinese) [蔡利兵, 王建国, 朱湘琴, 王玥, 宣春, 夏洪富 2012 61 075101]
[13] Cai L B, Wang J G, ZhuX Q 2011 Phys. Plasmas 18 7
[14] Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2013 High Power Laser and Particle Beams 25 2653 (in Chinese) [董烨, 董志伟, 周前红, 杨温渊, 周海京 2013 强激光与粒子束 25 2653]
[15] Kim H, Verboncoeur J 2006 Phys. Plasmas 13 123506
[16] Neuber A, Dickens J, Hemmert D, Krompholz H, Hatfield L, Kristiansen M 1998 IEEE Trans. Plasma Sci. 26 296
[17] Chang C, Huang H J, Liu G Z, Chen C H, Hou Q, Fang J Y 2009 J. Appl. Phys. 105 123305
[18] Chang C, Liu G Z, Huang H J, Chen C H, Fang J Y 2009 Phys. Plasmas 16 083501
[19] Dong Y, Dong Z W, Yang W Y, Zhou Q H, Zhou H J 2013 High Power Laser and Particle Beams 25 399 (in Chinese) [董烨, 董志伟, 杨温渊, 周前红, 周海京 2013 强激光与粒子束 25 399]
[20] Chen C H, Chang C, Liu W Y, Sun J 2013 Journal of Applied Physics 114 163304
[21] Chang C, Liu G Z, Fang J Y, Tang C X, Huang H J, Chen C H 2010 Laser Part. Beams 28 185
[22] Li S, Chang C, Wang J G, Zhu M, Peng J C 2013 Phys. Plasmas 20 123502
[23] Song B P, Fan Z Z, Su G Q, Mu H B, Zhang G J, Liu C L 2014 High Power Laser and Particle Beams 26 065008 (in Chinese) [宋佰鹏, 范壮壮, 苏国强, 穆海宝, 张冠军, 刘纯亮 2014 强激光与粒子束 26 065008]
[24] Hao X W, Zhang G J, Qiu S, Huang W H, Liu G Z 2010 IEEE Trans. Plasma Sci. 38 1403
[25] Power J, Gai W, Gold S, Kinkead A, Konecny R, Jing C, Liu W, Yusof Z 2007 Phys. Rev. Lett. 92 164801
[26] Wu L, Ang L 2007 Phys. Plasmas 14 013105
[27] Wang J G, Zhang D H, Liu C L, Li Y D, Wang Y, Wang H G, Qiao H L, Li X Z 2009 Phys. Plasmas 16 033108
[28] Wang J G, Wang Y, Zhang D H 2006 IEEE Trans. Plasma Sci. 34 681
[29] Wang J G, Chen Z G, Wang Y, Zhang D H, Liu C L 2010 Phys. Plasmas 17 073107
[30] Li Y D, Yang W J, Zhang N, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 077901 (in Chinese) [李永东, 杨文晋, 张娜, 崔万照, 刘纯亮 2013 62 077901]
Catalog
Metrics
- Abstract views: 5585
- PDF Downloads: 175
- Cited By: 0