-
Suppression of secondary electron yield attracted much attention in areas such as accelerator and high power microwave components in recent years. To evaluate the suppression efficiencies of different surface topographies, the secondary electron yields (SEYs) of four kinds of micro-structured surfaces for trapping secondary electrons, i.e., triangular groove, rectangular groove, cuboid, cylindrical, are obtained by the phenomenological probabilistic model of secondary electron emission. The simulation results show that the SEYs of these structures are much dependent on the shape parameters such as aspect ratio or porosity. There are mainly three findings: 1) the SEY decreases with increasing aspect ratio and porosity; 2) the traps with cuboid or cylindrical shape are more efficient than triangular or rectangular traps for the SEY suppression; 3) the SEY dependence of micro-structured surface on incident angle is not as obvious as that of flat surface. Micro-trapping structure surfaces are fabricated by mechanical method, photolithography process and chemical etching respectively. The measured SEYs of these samples validate the theoretical results. All these results show that the proposed micro-structures as secondary electron traps have potential applications in SEY suppression in fields such as multipactor and electron-cloud effects.
-
Keywords:
- secondary electron yield suppression /
- micro-trapping structure surface /
- phenomenological probabilistic model
[1] Seiler H 1983 J. Appl. Phys. 54 R1
[2] Xie A G, Zhang J, Wang T B 2011 Chin. Phys. Lett. 28 097901
[3] Balcon N, Payan D, Belhaj M, Inguimbert V 2012 IEEE Trans. Plasma Sci. 40 282
[4] Lin S, Li Y D, Cao M, Liu C L 2012 Vacuum Electron. (3) 1 (in Chinese) [林舒, 李永东, 曹猛, 刘纯亮 2012 真空电子技术 (3) 1]
[5] Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese) [李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮 2014 63 047902]
[6] Pinto P C, Calatroni S, Neupert H, Delrieux D L, Edwards P, Chiggiato P, Taborelli M, Vollenberg W, Vallgren C Y, Colaux J L, Lucas S 2013 Vacuum 98 29
[7] Li Y D, Yang W J, Zhang N, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 077901 (in Chinese) [李永东, 杨文晋, 张娜, 崔万照, 刘纯亮 2013 62 077901]
[8] Furman M A, Pivi M T F 2002 Phys. Rev. Top-AC 5 124404
[9] Kirby R E, King F K 2001 Nucl. Instrum. Meth. A 469 1
[10] Bai G D, Ding M Q, Zhao Q P, Qu B, Feng J J 2009 Vacuum Electron. 5 22 (in Chinese) [白国栋, 丁明清, 赵青平, 瞿波, 冯进军 2009 真空电子技术 5 22]
[11] Aguilera L, Montero I, Dávila M E, Ruiz A, Galán L, Nistor V, Raboso D, Palomares J, Soria F 2013 J. Phys. D: Appl. Phys. 46 165104
[12] Pivi M, King F K, Kirby R E, Raubenheimer T O 2008 J. Appl. Phys. 104 104904
[13] Ye M, He Y N, Hu S G, Wang R, Hu T C, Yang J, Cui W Z 2013 J. Appl. Phys. 113 074904
[14] Ye M, He Y N, Hu S G, Yang J, Wang R, Hu T C, Peng W B, Cui W Z 2013 J. Appl. Phys. 114 104905
[15] Ohya K, Itotani T, Kawata J 1994 Jpn. J. Appl. Phys. 33 1153
[16] Xie A G, Zhan Y, Gao Z Y, Wu H Y 2013 Chin. Phys. B 22 057901
[17] Lara J, Pérez F, Alfonseca M, Galán L, Montero I, Román E, Raboso D G B 2006 IEEE Trans. Plasma Sci. 34 476
[18] Zhou Z Y, Shi L Q, Zhao G Q, Lu Q L 2005 Chin. Phys. 14 1465
[19] Bruining H 1954 Physics and Applications of Secondary Electron Emission (London: Pergamon) pp42-44
[20] Cui W Z, Yang J, Zhang N 2013 Space Electron. (2) 75 (in Chinese) [崔万照, 杨晶, 张娜 2013 空间电子技术 (2) 75]
[21] Zhang H B, Hu X C, Wang R, Cao M, Zhang N, Cui W Z 2012 Rev. Sci. Instrum. 83 066105
[22] Zhang H B, Hu X C, Cao M, Zhang N, Cui W Z 2014 Vacuum 102 12
-
[1] Seiler H 1983 J. Appl. Phys. 54 R1
[2] Xie A G, Zhang J, Wang T B 2011 Chin. Phys. Lett. 28 097901
[3] Balcon N, Payan D, Belhaj M, Inguimbert V 2012 IEEE Trans. Plasma Sci. 40 282
[4] Lin S, Li Y D, Cao M, Liu C L 2012 Vacuum Electron. (3) 1 (in Chinese) [林舒, 李永东, 曹猛, 刘纯亮 2012 真空电子技术 (3) 1]
[5] Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese) [李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮 2014 63 047902]
[6] Pinto P C, Calatroni S, Neupert H, Delrieux D L, Edwards P, Chiggiato P, Taborelli M, Vollenberg W, Vallgren C Y, Colaux J L, Lucas S 2013 Vacuum 98 29
[7] Li Y D, Yang W J, Zhang N, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 077901 (in Chinese) [李永东, 杨文晋, 张娜, 崔万照, 刘纯亮 2013 62 077901]
[8] Furman M A, Pivi M T F 2002 Phys. Rev. Top-AC 5 124404
[9] Kirby R E, King F K 2001 Nucl. Instrum. Meth. A 469 1
[10] Bai G D, Ding M Q, Zhao Q P, Qu B, Feng J J 2009 Vacuum Electron. 5 22 (in Chinese) [白国栋, 丁明清, 赵青平, 瞿波, 冯进军 2009 真空电子技术 5 22]
[11] Aguilera L, Montero I, Dávila M E, Ruiz A, Galán L, Nistor V, Raboso D, Palomares J, Soria F 2013 J. Phys. D: Appl. Phys. 46 165104
[12] Pivi M, King F K, Kirby R E, Raubenheimer T O 2008 J. Appl. Phys. 104 104904
[13] Ye M, He Y N, Hu S G, Wang R, Hu T C, Yang J, Cui W Z 2013 J. Appl. Phys. 113 074904
[14] Ye M, He Y N, Hu S G, Yang J, Wang R, Hu T C, Peng W B, Cui W Z 2013 J. Appl. Phys. 114 104905
[15] Ohya K, Itotani T, Kawata J 1994 Jpn. J. Appl. Phys. 33 1153
[16] Xie A G, Zhan Y, Gao Z Y, Wu H Y 2013 Chin. Phys. B 22 057901
[17] Lara J, Pérez F, Alfonseca M, Galán L, Montero I, Román E, Raboso D G B 2006 IEEE Trans. Plasma Sci. 34 476
[18] Zhou Z Y, Shi L Q, Zhao G Q, Lu Q L 2005 Chin. Phys. 14 1465
[19] Bruining H 1954 Physics and Applications of Secondary Electron Emission (London: Pergamon) pp42-44
[20] Cui W Z, Yang J, Zhang N 2013 Space Electron. (2) 75 (in Chinese) [崔万照, 杨晶, 张娜 2013 空间电子技术 (2) 75]
[21] Zhang H B, Hu X C, Wang R, Cao M, Zhang N, Cui W Z 2012 Rev. Sci. Instrum. 83 066105
[22] Zhang H B, Hu X C, Cao M, Zhang N, Cui W Z 2014 Vacuum 102 12
Catalog
Metrics
- Abstract views: 6446
- PDF Downloads: 633
- Cited By: 0