搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微陷阱结构的金属二次电子发射系数抑制研究

叶鸣 贺永宁 王瑞 胡天存 张娜 杨晶 崔万照 张忠兵

引用本文:
Citation:

基于微陷阱结构的金属二次电子发射系数抑制研究

叶鸣, 贺永宁, 王瑞, 胡天存, 张娜, 杨晶, 崔万照, 张忠兵

Suppression of secondary electron emission by micro-trapping structure surface

Ye Ming, He Yong-Ning, Wang Rui, Hu Tian-Cun, Zhang Na, Yang Jing, Cui Wan-Zhao, Zhang Zhong-Bing
PDF
导出引用
  • 近年来,金属二次电子发射系数的抑制研究在加速器、大功率微波器件等领域得到了广泛关注. 为评估表面形貌对抑制效果的影响,利用唯象概率模型计算方法对三角形沟槽、矩形沟槽、方孔及圆孔4种不同形状微陷阱结构的二次电子发射系数进行了研究,分析了微陷阱结构的形状、尺寸对二次电子发射系数抑制特性的影响规律. 理论研究结果表明:陷阱结构的深宽比、孔隙率越大,则其二次电子发射系数抑制特性越明显;方孔形和圆孔形微陷阱结构的二次电子发射系数抑制效果优于三角形沟槽和矩形沟槽;具有大孔隙率的微陷阱结构表面的二次电子发射系数对入射角度的依赖显著弱于平滑表面. 制备了具有不同表面形貌的金属样片并进行二次电子发射系数测试,所得实验规律与理论模拟规律符合较好.
    Suppression of secondary electron yield attracted much attention in areas such as accelerator and high power microwave components in recent years. To evaluate the suppression efficiencies of different surface topographies, the secondary electron yields (SEYs) of four kinds of micro-structured surfaces for trapping secondary electrons, i.e., triangular groove, rectangular groove, cuboid, cylindrical, are obtained by the phenomenological probabilistic model of secondary electron emission. The simulation results show that the SEYs of these structures are much dependent on the shape parameters such as aspect ratio or porosity. There are mainly three findings: 1) the SEY decreases with increasing aspect ratio and porosity; 2) the traps with cuboid or cylindrical shape are more efficient than triangular or rectangular traps for the SEY suppression; 3) the SEY dependence of micro-structured surface on incident angle is not as obvious as that of flat surface. Micro-trapping structure surfaces are fabricated by mechanical method, photolithography process and chemical etching respectively. The measured SEYs of these samples validate the theoretical results. All these results show that the proposed micro-structures as secondary electron traps have potential applications in SEY suppression in fields such as multipactor and electron-cloud effects.
    • 基金项目: 国家自然科学基金(批准号:11275154)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11275154).
    [1]

    Seiler H 1983 J. Appl. Phys. 54 R1

    [2]

    Xie A G, Zhang J, Wang T B 2011 Chin. Phys. Lett. 28 097901

    [3]

    Balcon N, Payan D, Belhaj M, Inguimbert V 2012 IEEE Trans. Plasma Sci. 40 282

    [4]

    Lin S, Li Y D, Cao M, Liu C L 2012 Vacuum Electron. (3) 1 (in Chinese) [林舒, 李永东, 曹猛, 刘纯亮 2012 真空电子技术 (3) 1]

    [5]

    Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese) [李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮 2014 63 047902]

    [6]

    Pinto P C, Calatroni S, Neupert H, Delrieux D L, Edwards P, Chiggiato P, Taborelli M, Vollenberg W, Vallgren C Y, Colaux J L, Lucas S 2013 Vacuum 98 29

    [7]

    Li Y D, Yang W J, Zhang N, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 077901 (in Chinese) [李永东, 杨文晋, 张娜, 崔万照, 刘纯亮 2013 62 077901]

    [8]

    Furman M A, Pivi M T F 2002 Phys. Rev. Top-AC 5 124404

    [9]

    Kirby R E, King F K 2001 Nucl. Instrum. Meth. A 469 1

    [10]

    Bai G D, Ding M Q, Zhao Q P, Qu B, Feng J J 2009 Vacuum Electron. 5 22 (in Chinese) [白国栋, 丁明清, 赵青平, 瞿波, 冯进军 2009 真空电子技术 5 22]

    [11]

    Aguilera L, Montero I, Dávila M E, Ruiz A, Galán L, Nistor V, Raboso D, Palomares J, Soria F 2013 J. Phys. D: Appl. Phys. 46 165104

    [12]

    Pivi M, King F K, Kirby R E, Raubenheimer T O 2008 J. Appl. Phys. 104 104904

    [13]

    Ye M, He Y N, Hu S G, Wang R, Hu T C, Yang J, Cui W Z 2013 J. Appl. Phys. 113 074904

    [14]

    Ye M, He Y N, Hu S G, Yang J, Wang R, Hu T C, Peng W B, Cui W Z 2013 J. Appl. Phys. 114 104905

    [15]

    Ohya K, Itotani T, Kawata J 1994 Jpn. J. Appl. Phys. 33 1153

    [16]

    Xie A G, Zhan Y, Gao Z Y, Wu H Y 2013 Chin. Phys. B 22 057901

    [17]

    Lara J, Pérez F, Alfonseca M, Galán L, Montero I, Román E, Raboso D G B 2006 IEEE Trans. Plasma Sci. 34 476

    [18]

    Zhou Z Y, Shi L Q, Zhao G Q, Lu Q L 2005 Chin. Phys. 14 1465

    [19]

    Bruining H 1954 Physics and Applications of Secondary Electron Emission (London: Pergamon) pp42-44

    [20]

    Cui W Z, Yang J, Zhang N 2013 Space Electron. (2) 75 (in Chinese) [崔万照, 杨晶, 张娜 2013 空间电子技术 (2) 75]

    [21]

    Zhang H B, Hu X C, Wang R, Cao M, Zhang N, Cui W Z 2012 Rev. Sci. Instrum. 83 066105

    [22]

    Zhang H B, Hu X C, Cao M, Zhang N, Cui W Z 2014 Vacuum 102 12

  • [1]

    Seiler H 1983 J. Appl. Phys. 54 R1

    [2]

    Xie A G, Zhang J, Wang T B 2011 Chin. Phys. Lett. 28 097901

    [3]

    Balcon N, Payan D, Belhaj M, Inguimbert V 2012 IEEE Trans. Plasma Sci. 40 282

    [4]

    Lin S, Li Y D, Cao M, Liu C L 2012 Vacuum Electron. (3) 1 (in Chinese) [林舒, 李永东, 曹猛, 刘纯亮 2012 真空电子技术 (3) 1]

    [5]

    Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese) [李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮 2014 63 047902]

    [6]

    Pinto P C, Calatroni S, Neupert H, Delrieux D L, Edwards P, Chiggiato P, Taborelli M, Vollenberg W, Vallgren C Y, Colaux J L, Lucas S 2013 Vacuum 98 29

    [7]

    Li Y D, Yang W J, Zhang N, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 077901 (in Chinese) [李永东, 杨文晋, 张娜, 崔万照, 刘纯亮 2013 62 077901]

    [8]

    Furman M A, Pivi M T F 2002 Phys. Rev. Top-AC 5 124404

    [9]

    Kirby R E, King F K 2001 Nucl. Instrum. Meth. A 469 1

    [10]

    Bai G D, Ding M Q, Zhao Q P, Qu B, Feng J J 2009 Vacuum Electron. 5 22 (in Chinese) [白国栋, 丁明清, 赵青平, 瞿波, 冯进军 2009 真空电子技术 5 22]

    [11]

    Aguilera L, Montero I, Dávila M E, Ruiz A, Galán L, Nistor V, Raboso D, Palomares J, Soria F 2013 J. Phys. D: Appl. Phys. 46 165104

    [12]

    Pivi M, King F K, Kirby R E, Raubenheimer T O 2008 J. Appl. Phys. 104 104904

    [13]

    Ye M, He Y N, Hu S G, Wang R, Hu T C, Yang J, Cui W Z 2013 J. Appl. Phys. 113 074904

    [14]

    Ye M, He Y N, Hu S G, Yang J, Wang R, Hu T C, Peng W B, Cui W Z 2013 J. Appl. Phys. 114 104905

    [15]

    Ohya K, Itotani T, Kawata J 1994 Jpn. J. Appl. Phys. 33 1153

    [16]

    Xie A G, Zhan Y, Gao Z Y, Wu H Y 2013 Chin. Phys. B 22 057901

    [17]

    Lara J, Pérez F, Alfonseca M, Galán L, Montero I, Román E, Raboso D G B 2006 IEEE Trans. Plasma Sci. 34 476

    [18]

    Zhou Z Y, Shi L Q, Zhao G Q, Lu Q L 2005 Chin. Phys. 14 1465

    [19]

    Bruining H 1954 Physics and Applications of Secondary Electron Emission (London: Pergamon) pp42-44

    [20]

    Cui W Z, Yang J, Zhang N 2013 Space Electron. (2) 75 (in Chinese) [崔万照, 杨晶, 张娜 2013 空间电子技术 (2) 75]

    [21]

    Zhang H B, Hu X C, Wang R, Cao M, Zhang N, Cui W Z 2012 Rev. Sci. Instrum. 83 066105

    [22]

    Zhang H B, Hu X C, Cao M, Zhang N, Cui W Z 2014 Vacuum 102 12

  • [1] 张建威, 牛莹, 闫润圻, 张荣奇, 曹猛, 李永东, 刘纯亮, 张嘉伟. 体空位缺陷对氧化铝二次电子发射特性的影响分析.  , 2024, 73(15): 157902. doi: 10.7498/aps.73.20240577
    [2] 胡笑钏, 刘样溪, 楚坤, 段潮锋. 非晶态碳薄膜对金属二次电子发射的影响.  , 2024, 73(4): 047901. doi: 10.7498/aps.73.20231604
    [3] 孟祥琛, 王丹, 蔡亚辉, 叶振, 贺永宁, 徐亚男. 氧化铝表面二次电子发射抑制及其在微放电抑制中的应用.  , 2023, 72(10): 107901. doi: 10.7498/aps.72.20222404
    [4] 张含天, 周前红, 周海京, 孙强, 宋萌萌, 董烨, 杨薇, 姚建生. 二次电子发射对系统电磁脉冲的影响.  , 2021, 70(16): 165201. doi: 10.7498/aps.70.20210461
    [5] 陈龙, 孙少娟, 姜博瑞, 段萍, 安宇豪, 杨叶慧. 电子非麦氏分布的二次电子发射磁化鞘层特性.  , 2021, 70(24): 245201. doi: 10.7498/aps.70.20211061
    [6] 鲁圣国, 李丹丹, 林雄威, 简晓东, 赵小波, 姚英邦, 陶涛, 梁波. 铁电材料中电场对唯象系数和电卡强度的影响.  , 2020, 69(12): 127701. doi: 10.7498/aps.69.20200296
    [7] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响.  , 2020, 69(8): 087901. doi: 10.7498/aps.69.20200026
    [8] 王丹, 叶鸣, 冯鹏, 贺永宁, 崔万照. 激光刻蚀对镀金表面二次电子发射的有效抑制.  , 2019, 68(6): 067901. doi: 10.7498/aps.68.20181547
    [9] 何鋆, 俞斌, 王琪, 白春江, 杨晶, 胡天存, 谢贵柏, 崔万照. 磁控溅射铂抑制镀银表面的二次电子发射.  , 2018, 67(8): 087901. doi: 10.7498/aps.67.20172740
    [10] 王丹, 贺永宁, 叶鸣, 崔万照. 金纳米结构表面二次电子发射特性.  , 2018, 67(8): 087902. doi: 10.7498/aps.67.20180079
    [11] 胡晶, 曹猛, 李永东, 林舒, 夏宁. 微米量级表面结构形貌特性对二次电子发射抑制的优化.  , 2018, 67(17): 177901. doi: 10.7498/aps.67.20180466
    [12] 白春江, 封国宝, 崔万照, 贺永宁, 张雯, 胡少光, 叶鸣, 胡天存, 黄光荪, 王琪. 铝阳极氧化的多孔结构抑制二次电子发射的研究.  , 2018, 67(3): 037902. doi: 10.7498/aps.67.20172243
    [13] 李爽, 常超, 王建国, 刘彦升, 朱梦, 郭乐田, 谢佳玲. 横磁模下介质表面二次电子倍增的抑制.  , 2015, 64(13): 137701. doi: 10.7498/aps.64.137701
    [14] 翁明, 胡天存, 曹猛, 徐伟军. 电子入射角度对聚酰亚胺二次电子发射系数的影响.  , 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [15] 张娜, 曹猛, 崔万照, 胡天存, 王瑞, 李韵. 金属规则表面形貌影响二次电子产额的解析模型.  , 2015, 64(20): 207901. doi: 10.7498/aps.64.207901
    [16] 宋庆庆, 王新波, 崔万照, 王志宇, 冉立新. 多载波微放电中二次电子横向扩散的概率分析.  , 2014, 63(22): 220205. doi: 10.7498/aps.63.220205
    [17] 杨文晋, 李永东, 刘纯亮. 高入射能量下的金属二次电子发射模型.  , 2013, 62(8): 087901. doi: 10.7498/aps.62.087901
    [18] 李永东, 杨文晋, 张娜, 崔万照, 刘纯亮. 一种二次电子发射的复合唯象模型.  , 2013, 62(7): 077901. doi: 10.7498/aps.62.077901
    [19] 常天海, 郑俊荣. 固体金属二次电子发射的Monte-Carlo模拟.  , 2012, 61(24): 241401. doi: 10.7498/aps.61.241401
    [20] 吴自玉;兰慧彬;汪克林;刘耀阳;章正刚;冼鼎昌. 赝标介子的唯象模型(I).  , 1987, 36(8): 1048-1055. doi: 10.7498/aps.36.1048
计量
  • 文章访问数:  6444
  • PDF下载量:  633
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-11
  • 修回日期:  2014-03-27
  • 刊出日期:  2014-07-05

/

返回文章
返回
Baidu
map