-
近年来,金属二次电子发射系数的抑制研究在加速器、大功率微波器件等领域得到了广泛关注. 为评估表面形貌对抑制效果的影响,利用唯象概率模型计算方法对三角形沟槽、矩形沟槽、方孔及圆孔4种不同形状微陷阱结构的二次电子发射系数进行了研究,分析了微陷阱结构的形状、尺寸对二次电子发射系数抑制特性的影响规律. 理论研究结果表明:陷阱结构的深宽比、孔隙率越大,则其二次电子发射系数抑制特性越明显;方孔形和圆孔形微陷阱结构的二次电子发射系数抑制效果优于三角形沟槽和矩形沟槽;具有大孔隙率的微陷阱结构表面的二次电子发射系数对入射角度的依赖显著弱于平滑表面. 制备了具有不同表面形貌的金属样片并进行二次电子发射系数测试,所得实验规律与理论模拟规律符合较好.
-
关键词:
- 二次电子发射系数抑制 /
- 微陷阱结构 /
- 唯象概率模型
Suppression of secondary electron yield attracted much attention in areas such as accelerator and high power microwave components in recent years. To evaluate the suppression efficiencies of different surface topographies, the secondary electron yields (SEYs) of four kinds of micro-structured surfaces for trapping secondary electrons, i.e., triangular groove, rectangular groove, cuboid, cylindrical, are obtained by the phenomenological probabilistic model of secondary electron emission. The simulation results show that the SEYs of these structures are much dependent on the shape parameters such as aspect ratio or porosity. There are mainly three findings: 1) the SEY decreases with increasing aspect ratio and porosity; 2) the traps with cuboid or cylindrical shape are more efficient than triangular or rectangular traps for the SEY suppression; 3) the SEY dependence of micro-structured surface on incident angle is not as obvious as that of flat surface. Micro-trapping structure surfaces are fabricated by mechanical method, photolithography process and chemical etching respectively. The measured SEYs of these samples validate the theoretical results. All these results show that the proposed micro-structures as secondary electron traps have potential applications in SEY suppression in fields such as multipactor and electron-cloud effects.-
Keywords:
- secondary electron yield suppression /
- micro-trapping structure surface /
- phenomenological probabilistic model
[1] Seiler H 1983 J. Appl. Phys. 54 R1
[2] Xie A G, Zhang J, Wang T B 2011 Chin. Phys. Lett. 28 097901
[3] Balcon N, Payan D, Belhaj M, Inguimbert V 2012 IEEE Trans. Plasma Sci. 40 282
[4] Lin S, Li Y D, Cao M, Liu C L 2012 Vacuum Electron. (3) 1 (in Chinese) [林舒, 李永东, 曹猛, 刘纯亮 2012 真空电子技术 (3) 1]
[5] Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese) [李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮 2014 63 047902]
[6] Pinto P C, Calatroni S, Neupert H, Delrieux D L, Edwards P, Chiggiato P, Taborelli M, Vollenberg W, Vallgren C Y, Colaux J L, Lucas S 2013 Vacuum 98 29
[7] Li Y D, Yang W J, Zhang N, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 077901 (in Chinese) [李永东, 杨文晋, 张娜, 崔万照, 刘纯亮 2013 62 077901]
[8] Furman M A, Pivi M T F 2002 Phys. Rev. Top-AC 5 124404
[9] Kirby R E, King F K 2001 Nucl. Instrum. Meth. A 469 1
[10] Bai G D, Ding M Q, Zhao Q P, Qu B, Feng J J 2009 Vacuum Electron. 5 22 (in Chinese) [白国栋, 丁明清, 赵青平, 瞿波, 冯进军 2009 真空电子技术 5 22]
[11] Aguilera L, Montero I, Dávila M E, Ruiz A, Galán L, Nistor V, Raboso D, Palomares J, Soria F 2013 J. Phys. D: Appl. Phys. 46 165104
[12] Pivi M, King F K, Kirby R E, Raubenheimer T O 2008 J. Appl. Phys. 104 104904
[13] Ye M, He Y N, Hu S G, Wang R, Hu T C, Yang J, Cui W Z 2013 J. Appl. Phys. 113 074904
[14] Ye M, He Y N, Hu S G, Yang J, Wang R, Hu T C, Peng W B, Cui W Z 2013 J. Appl. Phys. 114 104905
[15] Ohya K, Itotani T, Kawata J 1994 Jpn. J. Appl. Phys. 33 1153
[16] Xie A G, Zhan Y, Gao Z Y, Wu H Y 2013 Chin. Phys. B 22 057901
[17] Lara J, Pérez F, Alfonseca M, Galán L, Montero I, Román E, Raboso D G B 2006 IEEE Trans. Plasma Sci. 34 476
[18] Zhou Z Y, Shi L Q, Zhao G Q, Lu Q L 2005 Chin. Phys. 14 1465
[19] Bruining H 1954 Physics and Applications of Secondary Electron Emission (London: Pergamon) pp42-44
[20] Cui W Z, Yang J, Zhang N 2013 Space Electron. (2) 75 (in Chinese) [崔万照, 杨晶, 张娜 2013 空间电子技术 (2) 75]
[21] Zhang H B, Hu X C, Wang R, Cao M, Zhang N, Cui W Z 2012 Rev. Sci. Instrum. 83 066105
[22] Zhang H B, Hu X C, Cao M, Zhang N, Cui W Z 2014 Vacuum 102 12
-
[1] Seiler H 1983 J. Appl. Phys. 54 R1
[2] Xie A G, Zhang J, Wang T B 2011 Chin. Phys. Lett. 28 097901
[3] Balcon N, Payan D, Belhaj M, Inguimbert V 2012 IEEE Trans. Plasma Sci. 40 282
[4] Lin S, Li Y D, Cao M, Liu C L 2012 Vacuum Electron. (3) 1 (in Chinese) [林舒, 李永东, 曹猛, 刘纯亮 2012 真空电子技术 (3) 1]
[5] Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese) [李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮 2014 63 047902]
[6] Pinto P C, Calatroni S, Neupert H, Delrieux D L, Edwards P, Chiggiato P, Taborelli M, Vollenberg W, Vallgren C Y, Colaux J L, Lucas S 2013 Vacuum 98 29
[7] Li Y D, Yang W J, Zhang N, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 077901 (in Chinese) [李永东, 杨文晋, 张娜, 崔万照, 刘纯亮 2013 62 077901]
[8] Furman M A, Pivi M T F 2002 Phys. Rev. Top-AC 5 124404
[9] Kirby R E, King F K 2001 Nucl. Instrum. Meth. A 469 1
[10] Bai G D, Ding M Q, Zhao Q P, Qu B, Feng J J 2009 Vacuum Electron. 5 22 (in Chinese) [白国栋, 丁明清, 赵青平, 瞿波, 冯进军 2009 真空电子技术 5 22]
[11] Aguilera L, Montero I, Dávila M E, Ruiz A, Galán L, Nistor V, Raboso D, Palomares J, Soria F 2013 J. Phys. D: Appl. Phys. 46 165104
[12] Pivi M, King F K, Kirby R E, Raubenheimer T O 2008 J. Appl. Phys. 104 104904
[13] Ye M, He Y N, Hu S G, Wang R, Hu T C, Yang J, Cui W Z 2013 J. Appl. Phys. 113 074904
[14] Ye M, He Y N, Hu S G, Yang J, Wang R, Hu T C, Peng W B, Cui W Z 2013 J. Appl. Phys. 114 104905
[15] Ohya K, Itotani T, Kawata J 1994 Jpn. J. Appl. Phys. 33 1153
[16] Xie A G, Zhan Y, Gao Z Y, Wu H Y 2013 Chin. Phys. B 22 057901
[17] Lara J, Pérez F, Alfonseca M, Galán L, Montero I, Román E, Raboso D G B 2006 IEEE Trans. Plasma Sci. 34 476
[18] Zhou Z Y, Shi L Q, Zhao G Q, Lu Q L 2005 Chin. Phys. 14 1465
[19] Bruining H 1954 Physics and Applications of Secondary Electron Emission (London: Pergamon) pp42-44
[20] Cui W Z, Yang J, Zhang N 2013 Space Electron. (2) 75 (in Chinese) [崔万照, 杨晶, 张娜 2013 空间电子技术 (2) 75]
[21] Zhang H B, Hu X C, Wang R, Cao M, Zhang N, Cui W Z 2012 Rev. Sci. Instrum. 83 066105
[22] Zhang H B, Hu X C, Cao M, Zhang N, Cui W Z 2014 Vacuum 102 12
计量
- 文章访问数: 6444
- PDF下载量: 633
- 被引次数: 0