-
The study on photoelectronic characteristics of ZnSe quantum dots (QDs) is of significance for investigating its microelectronic structure and expanding its potential applications because ZnSe QD has low biologic toxicity. In the present paper, the surface photovoltaic and photoacoustic technologies, and laser Raman, X-ray diffraction, transmission electron microscopy and Foureier transform infrared spectroscopy spectrum are jointly used to probe the microstructures, the photoacoustic and surface photovoltaic characteristics of L-Cysteine-capped ZnSe QDs prepared by water-phase synthesis at different reflux temperatures. The results indicate that the ZnSe QDs with a mean grain size of about 3 nm has a core-shell ZnSe/ZnS/L-Cys structure, in which the sulfhydryl groups in ligand prefer reacting with Zn atom at the (220) face to form the ZnS shell layer between the core-ZnSe and ligand L-Cys. The results show that the QDs with n-type photovoltaic property display a wide range of surface photovoltaic response and weak photoacoustic signal upon the illumination of near ultraviolet to visible light as compared with others QDs with similar core-shell structures in II-VI group. Especially, the strong SPV response and the weak PA signal in a wavelength region of 350-550 nm imply that the photon energies in the range are almost all used to produce the surface photovoltaic (SPV) phenomenon instead of the thermal lattice vibration caused by non-radiative de-excitation process. This reveals the energy complementary relationship between the photoacoustic and the surface photovoltaic phenomena of the QDs. The PA signals appearing in a short wavelength range of 300-350 nm and the Raman peaks located in a high frequency ranges of 1120 cm-1, 1340 cm-1 and 1455 cm-1 are identified as relating closely to the multi-phonon vibration modes of ligand L-Cys. At low reflux temperature, the photoelectric threshold of the SPV response that relates to the core-ZnSe displays a red shift to a certain extent as compared with the bulk ZnSe. The narrowed bandgap may be attributed to quantum confinement effect of the QDs. In addition, the intensity of the SPV response that relates to the core-ZnSe gradually increases with the decrease of the reflux temperature. The results show that the above improved surface photovoltaic characteristics of the QDs may benefit from the reduced average grain size of the ZnSe QDs, thus causing its surface and small-size effects.
-
Keywords:
- ZnSe QDs /
- core-shell structure /
- photoacoustic spectroscopy /
- surface photovoltaic spectroscopy
[1] Li K Y, Xue Z J 2014 Mater. Chem. Phys. 148 253
[2] Feng B, Cao J, Yang J H, Yang S, Han D L 2014 Mater. Res. Bull. 60 794
[3] Senthilkumar K, Kalaivani T, Kanagesan S, Balasubramanian V, Balakrishnan J 2013 J. Mater. Sci: Mater. Electron 24 692
[4] Carbone L, Cozzoli P D 2010 Nano Today 5 449
[5] Goswami B, Pal S, Ghosh C, Sarkar P 2009 J. Phys. Chem. C 113 6439
[6] Colibaba G, Caraman M, Evtodiev I, Evtodiev S, Goncearenco E, Nedeoglo D, Nedeoglo N 2014 J. Lumin. 145 237
[7] Zhang L, Yang H, Yu J, Shao F, Li L, Zhang F, Zhao H 2009 J. Phys. Chem. C 113 5434
[8] Pardo-Gonzalez A P, Castro-Lora H G, Lpez-Carreo L D, Martnez H M, Salcedo N J T 2014 J. Phys. Chem. Solids 75 713
[9] Archana J, Navaneethan M, Hayakawa Y, Ponnusamy S, Muthamizhchelvan C 2012 Mater. Res. Bull. 47 1892
[10] Weaver A L, Gamelin D R 2012 J. Am. Chem. Soc. 134 6819
[11] Wang X, Zhu J, Zhang Y, Jiang J, Wei S 2010 Appl. Phys. A 99 651
[12] Zhu J, Koltypin Y, Gedanken A 2000 Chem. Mater. 12 73
[13] Shakir M, Kushwaha S K, Maurya K K, Bhagavannarayana G 2009 Solid State Commun. 149 2047
[14] Yang L, Xie R, Liu L, Xiao D, Zhu J 2011 J. Phys. Chem. C 115 19507
[15] Yang Y J, Xiang B J 2005 J. Cryst. Growth 284 453
[16] Peng X G, Manna L, Yang W D, Wickham J, Scher E, Kadavanich A, Allvisatos A P 2000 Nature 404 59
[17] Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A P 1998 Science281 2013
[18] An H Z, Zhao Q, Du W M 2004 Chin. Phys. B 13 1753
[19] Zafar M, Ahmed S, Shakil M, Choudhary M A, Mahmood K 2015 Chin. Phys. B 24 0761061
[20] Hines M A, Guyot-Sionnest P 1998 J. Phys. Chem. B 102 3655
[21] Xiong S, Huang S, Tang A, Teng F 2007 Mater. Lett. 61 5091
[22] Lu L W, Wang Z G 2002 Acta Phya. Sin. 51 310 (in Chinese) [卢励吾, 王占国 2002 51 310]
[23] Qu J R, Zhen J B, Wang C F, Wu G R, Hao J 2013 Acta Phys. Sin. 62 0788021 (in Chinese) [屈俊荣, 郑建邦, 王春锋, 吴广荣, 郝娟 2013 62 0788021]
[24] Xia M L, Liu C, Zhao Z Y, Ai B, Yin Q Y, Xie J, Han J J, Zhao X J 2015 J. Non-Cryst. Solids 429 79
[25] Murase N, Gao M Y 2004 Mater. Lett. 58 3898
[26] Liu B T, Yu H Y, Wang Y, Peng L G, Han T, Tian L L, Yan L T 2015 J. Alloy. Compd. 640 246
[27] Xue Z J, Li K Y, Sun Z P 2013 Acta Phys. Sin. 62 066801 (in Chinese) [薛振杰, 李葵英, 孙振平 2013 62 066801]
[28] Li K Y, Shan Q S, Zhu R P, Yin H, Lin Y Y, Wang L Q 2015 Nanoscale 7 7906
[29] Rosencwaig A, Gersho A 1976 J. Appl. Phys. 47 64
[30] Yin Q R, Wang T, Qian M L 1999 Photoacoustic and Photo-Thermal Technology and Applications (Beijing: Science Press) pp18-34 (in Chinese) [殷庆瑞, 王通, 钱梦騄 1999 光声光热技术及其应用 (北京:科学出版社) 第1834页]
[31] Rosencwaig A (translated by Wang Y J, Zhang S Y, Lu Z G) 1986 Photoacoustic and Photoacoustic Spectroscopy (Beijing: Science Press) pp94-105 (in Chinese) [罗森威格 A (王耀俊, 张淑仪, 卢宗桂 译) 1986 光声学和光声谱学 (北京:科学出版社) 第94105页]
[32] Reiss P, Carayon S, Bleuse J, Pron A 2003 Synthetic Met. 139 649
[33] Kronik L, Shapira Y 1999 Surf. Sci. Rep. 37 1
[34] Li K Y, Liu T, Zhou B J, Wei S L, Yang W Y 2010 Acta Phys. -Chim. Sin. 26 403 (in Chinese) [李葵英, 刘通, 周冰晶, 魏赛玲, 杨伟勇 2010 物理化学学报 26 403]
[35] Li K Y, Zhang H, Yang W Y, Wei S L, Wang D Y 2010 Mater. Chem. Phys. 123 98
[36] Li K Y, Ding Y Y, Guo J, Wang D Y 2008 Mater. Chem. Phys. 112 1001
[37] Li K Y, Song G J, Zhang J, Wang C M, Guo B 2011 J. Photoch. Photobio. A 218 213
[38] Feng B, Yang J H, Cao J, Yang L L, Gao M, Wei M B, Liu Y, Song H 2013 Mater. Res. Bull. 48 1040
[39] Arivazhagan V, Manonmani P M, Rajesh S 2013 J. Alloy. Compd. 577 431
[40] Zhou X, Zeng X H, Yan X Q, Xia W W, Zhou Y X, Shen X S 2014 Mater. Res. Bull. 59 25
[41] Zeng X H, Zhang W, Cui J Y, Zhou M, Chen H T 2014 Mater. Res. Bull. 50 359
[42] Trajić J, Kostić R, Romčević N, Romčević M, Mitrić M, Lazović V, Balaž P, Stojanović 2014 J. Alloy. Compd. 637 401
[43] Daz-Reyes J, Castillo-Ojeda R S, Snchez-Espndola R, Galvn-Arellano M, Zaca-Morn O 2014 Curr. Appl. Phys. 15 103
[44] Sotillo B, Fernndez P, Piqueras J 2013 J. Alloy. Compd. 563 113
[45] Peng J J, Liu S P, Wang L, Liu Z W, He Y Q 2009 J. Colloid Interface Sci. 338 578
[46] Xue X H, Pan J, Xie H M, Wang J H, Zhang S 2009 Talanta 77 1808
[47] Lu G W, An H Z, Chen Y, Huang J H, Zhang H Z, Xiang B, Zhao Q, Yu D P, Du W M 2005 J. Cryst. Growth 274 530
[48] Freitas-Neto E S, Silva A C A, Silva S W, Morais P C, Gmez J A, Baffa O, Dantas N O 2013 J. Raman Spectrosc. 44 1022
[49] Kim K, Lee Y M, Lee H B, Park Y, Bae T Y, Jung Y M, Choi C H, Shin K S 2010 J. Raman Spectrosc. 41 187
[50] Fu X G, An H Z, Du W M 2005 Mater. Lett. 59 1484
[51] Lee H, Kim M S, Suh S W 1991 J. Raman Spectrosc. 22 91
-
[1] Li K Y, Xue Z J 2014 Mater. Chem. Phys. 148 253
[2] Feng B, Cao J, Yang J H, Yang S, Han D L 2014 Mater. Res. Bull. 60 794
[3] Senthilkumar K, Kalaivani T, Kanagesan S, Balasubramanian V, Balakrishnan J 2013 J. Mater. Sci: Mater. Electron 24 692
[4] Carbone L, Cozzoli P D 2010 Nano Today 5 449
[5] Goswami B, Pal S, Ghosh C, Sarkar P 2009 J. Phys. Chem. C 113 6439
[6] Colibaba G, Caraman M, Evtodiev I, Evtodiev S, Goncearenco E, Nedeoglo D, Nedeoglo N 2014 J. Lumin. 145 237
[7] Zhang L, Yang H, Yu J, Shao F, Li L, Zhang F, Zhao H 2009 J. Phys. Chem. C 113 5434
[8] Pardo-Gonzalez A P, Castro-Lora H G, Lpez-Carreo L D, Martnez H M, Salcedo N J T 2014 J. Phys. Chem. Solids 75 713
[9] Archana J, Navaneethan M, Hayakawa Y, Ponnusamy S, Muthamizhchelvan C 2012 Mater. Res. Bull. 47 1892
[10] Weaver A L, Gamelin D R 2012 J. Am. Chem. Soc. 134 6819
[11] Wang X, Zhu J, Zhang Y, Jiang J, Wei S 2010 Appl. Phys. A 99 651
[12] Zhu J, Koltypin Y, Gedanken A 2000 Chem. Mater. 12 73
[13] Shakir M, Kushwaha S K, Maurya K K, Bhagavannarayana G 2009 Solid State Commun. 149 2047
[14] Yang L, Xie R, Liu L, Xiao D, Zhu J 2011 J. Phys. Chem. C 115 19507
[15] Yang Y J, Xiang B J 2005 J. Cryst. Growth 284 453
[16] Peng X G, Manna L, Yang W D, Wickham J, Scher E, Kadavanich A, Allvisatos A P 2000 Nature 404 59
[17] Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A P 1998 Science281 2013
[18] An H Z, Zhao Q, Du W M 2004 Chin. Phys. B 13 1753
[19] Zafar M, Ahmed S, Shakil M, Choudhary M A, Mahmood K 2015 Chin. Phys. B 24 0761061
[20] Hines M A, Guyot-Sionnest P 1998 J. Phys. Chem. B 102 3655
[21] Xiong S, Huang S, Tang A, Teng F 2007 Mater. Lett. 61 5091
[22] Lu L W, Wang Z G 2002 Acta Phya. Sin. 51 310 (in Chinese) [卢励吾, 王占国 2002 51 310]
[23] Qu J R, Zhen J B, Wang C F, Wu G R, Hao J 2013 Acta Phys. Sin. 62 0788021 (in Chinese) [屈俊荣, 郑建邦, 王春锋, 吴广荣, 郝娟 2013 62 0788021]
[24] Xia M L, Liu C, Zhao Z Y, Ai B, Yin Q Y, Xie J, Han J J, Zhao X J 2015 J. Non-Cryst. Solids 429 79
[25] Murase N, Gao M Y 2004 Mater. Lett. 58 3898
[26] Liu B T, Yu H Y, Wang Y, Peng L G, Han T, Tian L L, Yan L T 2015 J. Alloy. Compd. 640 246
[27] Xue Z J, Li K Y, Sun Z P 2013 Acta Phys. Sin. 62 066801 (in Chinese) [薛振杰, 李葵英, 孙振平 2013 62 066801]
[28] Li K Y, Shan Q S, Zhu R P, Yin H, Lin Y Y, Wang L Q 2015 Nanoscale 7 7906
[29] Rosencwaig A, Gersho A 1976 J. Appl. Phys. 47 64
[30] Yin Q R, Wang T, Qian M L 1999 Photoacoustic and Photo-Thermal Technology and Applications (Beijing: Science Press) pp18-34 (in Chinese) [殷庆瑞, 王通, 钱梦騄 1999 光声光热技术及其应用 (北京:科学出版社) 第1834页]
[31] Rosencwaig A (translated by Wang Y J, Zhang S Y, Lu Z G) 1986 Photoacoustic and Photoacoustic Spectroscopy (Beijing: Science Press) pp94-105 (in Chinese) [罗森威格 A (王耀俊, 张淑仪, 卢宗桂 译) 1986 光声学和光声谱学 (北京:科学出版社) 第94105页]
[32] Reiss P, Carayon S, Bleuse J, Pron A 2003 Synthetic Met. 139 649
[33] Kronik L, Shapira Y 1999 Surf. Sci. Rep. 37 1
[34] Li K Y, Liu T, Zhou B J, Wei S L, Yang W Y 2010 Acta Phys. -Chim. Sin. 26 403 (in Chinese) [李葵英, 刘通, 周冰晶, 魏赛玲, 杨伟勇 2010 物理化学学报 26 403]
[35] Li K Y, Zhang H, Yang W Y, Wei S L, Wang D Y 2010 Mater. Chem. Phys. 123 98
[36] Li K Y, Ding Y Y, Guo J, Wang D Y 2008 Mater. Chem. Phys. 112 1001
[37] Li K Y, Song G J, Zhang J, Wang C M, Guo B 2011 J. Photoch. Photobio. A 218 213
[38] Feng B, Yang J H, Cao J, Yang L L, Gao M, Wei M B, Liu Y, Song H 2013 Mater. Res. Bull. 48 1040
[39] Arivazhagan V, Manonmani P M, Rajesh S 2013 J. Alloy. Compd. 577 431
[40] Zhou X, Zeng X H, Yan X Q, Xia W W, Zhou Y X, Shen X S 2014 Mater. Res. Bull. 59 25
[41] Zeng X H, Zhang W, Cui J Y, Zhou M, Chen H T 2014 Mater. Res. Bull. 50 359
[42] Trajić J, Kostić R, Romčević N, Romčević M, Mitrić M, Lazović V, Balaž P, Stojanović 2014 J. Alloy. Compd. 637 401
[43] Daz-Reyes J, Castillo-Ojeda R S, Snchez-Espndola R, Galvn-Arellano M, Zaca-Morn O 2014 Curr. Appl. Phys. 15 103
[44] Sotillo B, Fernndez P, Piqueras J 2013 J. Alloy. Compd. 563 113
[45] Peng J J, Liu S P, Wang L, Liu Z W, He Y Q 2009 J. Colloid Interface Sci. 338 578
[46] Xue X H, Pan J, Xie H M, Wang J H, Zhang S 2009 Talanta 77 1808
[47] Lu G W, An H Z, Chen Y, Huang J H, Zhang H Z, Xiang B, Zhao Q, Yu D P, Du W M 2005 J. Cryst. Growth 274 530
[48] Freitas-Neto E S, Silva A C A, Silva S W, Morais P C, Gmez J A, Baffa O, Dantas N O 2013 J. Raman Spectrosc. 44 1022
[49] Kim K, Lee Y M, Lee H B, Park Y, Bae T Y, Jung Y M, Choi C H, Shin K S 2010 J. Raman Spectrosc. 41 187
[50] Fu X G, An H Z, Du W M 2005 Mater. Lett. 59 1484
[51] Lee H, Kim M S, Suh S W 1991 J. Raman Spectrosc. 22 91
Catalog
Metrics
- Abstract views: 6637
- PDF Downloads: 204
- Cited By: 0