Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photoacoustic and surface photovoltaic characteristics of L-Cysteine-capped ZnSe quantum dots with a core-shell structure

Lin Ying-Ying Li Kui-Ying Shan Qing-Song Yin Hua Zhu Rui-Ping

Citation:

Photoacoustic and surface photovoltaic characteristics of L-Cysteine-capped ZnSe quantum dots with a core-shell structure

Lin Ying-Ying, Li Kui-Ying, Shan Qing-Song, Yin Hua, Zhu Rui-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The study on photoelectronic characteristics of ZnSe quantum dots (QDs) is of significance for investigating its microelectronic structure and expanding its potential applications because ZnSe QD has low biologic toxicity. In the present paper, the surface photovoltaic and photoacoustic technologies, and laser Raman, X-ray diffraction, transmission electron microscopy and Foureier transform infrared spectroscopy spectrum are jointly used to probe the microstructures, the photoacoustic and surface photovoltaic characteristics of L-Cysteine-capped ZnSe QDs prepared by water-phase synthesis at different reflux temperatures. The results indicate that the ZnSe QDs with a mean grain size of about 3 nm has a core-shell ZnSe/ZnS/L-Cys structure, in which the sulfhydryl groups in ligand prefer reacting with Zn atom at the (220) face to form the ZnS shell layer between the core-ZnSe and ligand L-Cys. The results show that the QDs with n-type photovoltaic property display a wide range of surface photovoltaic response and weak photoacoustic signal upon the illumination of near ultraviolet to visible light as compared with others QDs with similar core-shell structures in II-VI group. Especially, the strong SPV response and the weak PA signal in a wavelength region of 350-550 nm imply that the photon energies in the range are almost all used to produce the surface photovoltaic (SPV) phenomenon instead of the thermal lattice vibration caused by non-radiative de-excitation process. This reveals the energy complementary relationship between the photoacoustic and the surface photovoltaic phenomena of the QDs. The PA signals appearing in a short wavelength range of 300-350 nm and the Raman peaks located in a high frequency ranges of 1120 cm-1, 1340 cm-1 and 1455 cm-1 are identified as relating closely to the multi-phonon vibration modes of ligand L-Cys. At low reflux temperature, the photoelectric threshold of the SPV response that relates to the core-ZnSe displays a red shift to a certain extent as compared with the bulk ZnSe. The narrowed bandgap may be attributed to quantum confinement effect of the QDs. In addition, the intensity of the SPV response that relates to the core-ZnSe gradually increases with the decrease of the reflux temperature. The results show that the above improved surface photovoltaic characteristics of the QDs may benefit from the reduced average grain size of the ZnSe QDs, thus causing its surface and small-size effects.
      Corresponding author: Li Kui-Ying, kuiyingli@ysu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. E2013203296), and the Key Reserch Foundation of the Education Department of Hebei Province, China (Grant No. ZH200814).
    [1]

    Li K Y, Xue Z J 2014 Mater. Chem. Phys. 148 253

    [2]

    Feng B, Cao J, Yang J H, Yang S, Han D L 2014 Mater. Res. Bull. 60 794

    [3]

    Senthilkumar K, Kalaivani T, Kanagesan S, Balasubramanian V, Balakrishnan J 2013 J. Mater. Sci: Mater. Electron 24 692

    [4]

    Carbone L, Cozzoli P D 2010 Nano Today 5 449

    [5]

    Goswami B, Pal S, Ghosh C, Sarkar P 2009 J. Phys. Chem. C 113 6439

    [6]

    Colibaba G, Caraman M, Evtodiev I, Evtodiev S, Goncearenco E, Nedeoglo D, Nedeoglo N 2014 J. Lumin. 145 237

    [7]

    Zhang L, Yang H, Yu J, Shao F, Li L, Zhang F, Zhao H 2009 J. Phys. Chem. C 113 5434

    [8]

    Pardo-Gonzalez A P, Castro-Lora H G, Lpez-Carreo L D, Martnez H M, Salcedo N J T 2014 J. Phys. Chem. Solids 75 713

    [9]

    Archana J, Navaneethan M, Hayakawa Y, Ponnusamy S, Muthamizhchelvan C 2012 Mater. Res. Bull. 47 1892

    [10]

    Weaver A L, Gamelin D R 2012 J. Am. Chem. Soc. 134 6819

    [11]

    Wang X, Zhu J, Zhang Y, Jiang J, Wei S 2010 Appl. Phys. A 99 651

    [12]

    Zhu J, Koltypin Y, Gedanken A 2000 Chem. Mater. 12 73

    [13]

    Shakir M, Kushwaha S K, Maurya K K, Bhagavannarayana G 2009 Solid State Commun. 149 2047

    [14]

    Yang L, Xie R, Liu L, Xiao D, Zhu J 2011 J. Phys. Chem. C 115 19507

    [15]

    Yang Y J, Xiang B J 2005 J. Cryst. Growth 284 453

    [16]

    Peng X G, Manna L, Yang W D, Wickham J, Scher E, Kadavanich A, Allvisatos A P 2000 Nature 404 59

    [17]

    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A P 1998 Science281 2013

    [18]

    An H Z, Zhao Q, Du W M 2004 Chin. Phys. B 13 1753

    [19]

    Zafar M, Ahmed S, Shakil M, Choudhary M A, Mahmood K 2015 Chin. Phys. B 24 0761061

    [20]

    Hines M A, Guyot-Sionnest P 1998 J. Phys. Chem. B 102 3655

    [21]

    Xiong S, Huang S, Tang A, Teng F 2007 Mater. Lett. 61 5091

    [22]

    Lu L W, Wang Z G 2002 Acta Phya. Sin. 51 310 (in Chinese) [卢励吾, 王占国 2002 51 310]

    [23]

    Qu J R, Zhen J B, Wang C F, Wu G R, Hao J 2013 Acta Phys. Sin. 62 0788021 (in Chinese) [屈俊荣, 郑建邦, 王春锋, 吴广荣, 郝娟 2013 62 0788021]

    [24]

    Xia M L, Liu C, Zhao Z Y, Ai B, Yin Q Y, Xie J, Han J J, Zhao X J 2015 J. Non-Cryst. Solids 429 79

    [25]

    Murase N, Gao M Y 2004 Mater. Lett. 58 3898

    [26]

    Liu B T, Yu H Y, Wang Y, Peng L G, Han T, Tian L L, Yan L T 2015 J. Alloy. Compd. 640 246

    [27]

    Xue Z J, Li K Y, Sun Z P 2013 Acta Phys. Sin. 62 066801 (in Chinese) [薛振杰, 李葵英, 孙振平 2013 62 066801]

    [28]

    Li K Y, Shan Q S, Zhu R P, Yin H, Lin Y Y, Wang L Q 2015 Nanoscale 7 7906

    [29]

    Rosencwaig A, Gersho A 1976 J. Appl. Phys. 47 64

    [30]

    Yin Q R, Wang T, Qian M L 1999 Photoacoustic and Photo-Thermal Technology and Applications (Beijing: Science Press) pp18-34 (in Chinese) [殷庆瑞, 王通, 钱梦騄 1999 光声光热技术及其应用 (北京:科学出版社) 第1834页]

    [31]

    Rosencwaig A (translated by Wang Y J, Zhang S Y, Lu Z G) 1986 Photoacoustic and Photoacoustic Spectroscopy (Beijing: Science Press) pp94-105 (in Chinese) [罗森威格 A (王耀俊, 张淑仪, 卢宗桂 译) 1986 光声学和光声谱学 (北京:科学出版社) 第94105页]

    [32]

    Reiss P, Carayon S, Bleuse J, Pron A 2003 Synthetic Met. 139 649

    [33]

    Kronik L, Shapira Y 1999 Surf. Sci. Rep. 37 1

    [34]

    Li K Y, Liu T, Zhou B J, Wei S L, Yang W Y 2010 Acta Phys. -Chim. Sin. 26 403 (in Chinese) [李葵英, 刘通, 周冰晶, 魏赛玲, 杨伟勇 2010 物理化学学报 26 403]

    [35]

    Li K Y, Zhang H, Yang W Y, Wei S L, Wang D Y 2010 Mater. Chem. Phys. 123 98

    [36]

    Li K Y, Ding Y Y, Guo J, Wang D Y 2008 Mater. Chem. Phys. 112 1001

    [37]

    Li K Y, Song G J, Zhang J, Wang C M, Guo B 2011 J. Photoch. Photobio. A 218 213

    [38]

    Feng B, Yang J H, Cao J, Yang L L, Gao M, Wei M B, Liu Y, Song H 2013 Mater. Res. Bull. 48 1040

    [39]

    Arivazhagan V, Manonmani P M, Rajesh S 2013 J. Alloy. Compd. 577 431

    [40]

    Zhou X, Zeng X H, Yan X Q, Xia W W, Zhou Y X, Shen X S 2014 Mater. Res. Bull. 59 25

    [41]

    Zeng X H, Zhang W, Cui J Y, Zhou M, Chen H T 2014 Mater. Res. Bull. 50 359

    [42]

    Trajić J, Kostić R, Romčević N, Romčević M, Mitrić M, Lazović V, Balaž P, Stojanović 2014 J. Alloy. Compd. 637 401

    [43]

    Daz-Reyes J, Castillo-Ojeda R S, Snchez-Espndola R, Galvn-Arellano M, Zaca-Morn O 2014 Curr. Appl. Phys. 15 103

    [44]

    Sotillo B, Fernndez P, Piqueras J 2013 J. Alloy. Compd. 563 113

    [45]

    Peng J J, Liu S P, Wang L, Liu Z W, He Y Q 2009 J. Colloid Interface Sci. 338 578

    [46]

    Xue X H, Pan J, Xie H M, Wang J H, Zhang S 2009 Talanta 77 1808

    [47]

    Lu G W, An H Z, Chen Y, Huang J H, Zhang H Z, Xiang B, Zhao Q, Yu D P, Du W M 2005 J. Cryst. Growth 274 530

    [48]

    Freitas-Neto E S, Silva A C A, Silva S W, Morais P C, Gmez J A, Baffa O, Dantas N O 2013 J. Raman Spectrosc. 44 1022

    [49]

    Kim K, Lee Y M, Lee H B, Park Y, Bae T Y, Jung Y M, Choi C H, Shin K S 2010 J. Raman Spectrosc. 41 187

    [50]

    Fu X G, An H Z, Du W M 2005 Mater. Lett. 59 1484

    [51]

    Lee H, Kim M S, Suh S W 1991 J. Raman Spectrosc. 22 91

  • [1]

    Li K Y, Xue Z J 2014 Mater. Chem. Phys. 148 253

    [2]

    Feng B, Cao J, Yang J H, Yang S, Han D L 2014 Mater. Res. Bull. 60 794

    [3]

    Senthilkumar K, Kalaivani T, Kanagesan S, Balasubramanian V, Balakrishnan J 2013 J. Mater. Sci: Mater. Electron 24 692

    [4]

    Carbone L, Cozzoli P D 2010 Nano Today 5 449

    [5]

    Goswami B, Pal S, Ghosh C, Sarkar P 2009 J. Phys. Chem. C 113 6439

    [6]

    Colibaba G, Caraman M, Evtodiev I, Evtodiev S, Goncearenco E, Nedeoglo D, Nedeoglo N 2014 J. Lumin. 145 237

    [7]

    Zhang L, Yang H, Yu J, Shao F, Li L, Zhang F, Zhao H 2009 J. Phys. Chem. C 113 5434

    [8]

    Pardo-Gonzalez A P, Castro-Lora H G, Lpez-Carreo L D, Martnez H M, Salcedo N J T 2014 J. Phys. Chem. Solids 75 713

    [9]

    Archana J, Navaneethan M, Hayakawa Y, Ponnusamy S, Muthamizhchelvan C 2012 Mater. Res. Bull. 47 1892

    [10]

    Weaver A L, Gamelin D R 2012 J. Am. Chem. Soc. 134 6819

    [11]

    Wang X, Zhu J, Zhang Y, Jiang J, Wei S 2010 Appl. Phys. A 99 651

    [12]

    Zhu J, Koltypin Y, Gedanken A 2000 Chem. Mater. 12 73

    [13]

    Shakir M, Kushwaha S K, Maurya K K, Bhagavannarayana G 2009 Solid State Commun. 149 2047

    [14]

    Yang L, Xie R, Liu L, Xiao D, Zhu J 2011 J. Phys. Chem. C 115 19507

    [15]

    Yang Y J, Xiang B J 2005 J. Cryst. Growth 284 453

    [16]

    Peng X G, Manna L, Yang W D, Wickham J, Scher E, Kadavanich A, Allvisatos A P 2000 Nature 404 59

    [17]

    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A P 1998 Science281 2013

    [18]

    An H Z, Zhao Q, Du W M 2004 Chin. Phys. B 13 1753

    [19]

    Zafar M, Ahmed S, Shakil M, Choudhary M A, Mahmood K 2015 Chin. Phys. B 24 0761061

    [20]

    Hines M A, Guyot-Sionnest P 1998 J. Phys. Chem. B 102 3655

    [21]

    Xiong S, Huang S, Tang A, Teng F 2007 Mater. Lett. 61 5091

    [22]

    Lu L W, Wang Z G 2002 Acta Phya. Sin. 51 310 (in Chinese) [卢励吾, 王占国 2002 51 310]

    [23]

    Qu J R, Zhen J B, Wang C F, Wu G R, Hao J 2013 Acta Phys. Sin. 62 0788021 (in Chinese) [屈俊荣, 郑建邦, 王春锋, 吴广荣, 郝娟 2013 62 0788021]

    [24]

    Xia M L, Liu C, Zhao Z Y, Ai B, Yin Q Y, Xie J, Han J J, Zhao X J 2015 J. Non-Cryst. Solids 429 79

    [25]

    Murase N, Gao M Y 2004 Mater. Lett. 58 3898

    [26]

    Liu B T, Yu H Y, Wang Y, Peng L G, Han T, Tian L L, Yan L T 2015 J. Alloy. Compd. 640 246

    [27]

    Xue Z J, Li K Y, Sun Z P 2013 Acta Phys. Sin. 62 066801 (in Chinese) [薛振杰, 李葵英, 孙振平 2013 62 066801]

    [28]

    Li K Y, Shan Q S, Zhu R P, Yin H, Lin Y Y, Wang L Q 2015 Nanoscale 7 7906

    [29]

    Rosencwaig A, Gersho A 1976 J. Appl. Phys. 47 64

    [30]

    Yin Q R, Wang T, Qian M L 1999 Photoacoustic and Photo-Thermal Technology and Applications (Beijing: Science Press) pp18-34 (in Chinese) [殷庆瑞, 王通, 钱梦騄 1999 光声光热技术及其应用 (北京:科学出版社) 第1834页]

    [31]

    Rosencwaig A (translated by Wang Y J, Zhang S Y, Lu Z G) 1986 Photoacoustic and Photoacoustic Spectroscopy (Beijing: Science Press) pp94-105 (in Chinese) [罗森威格 A (王耀俊, 张淑仪, 卢宗桂 译) 1986 光声学和光声谱学 (北京:科学出版社) 第94105页]

    [32]

    Reiss P, Carayon S, Bleuse J, Pron A 2003 Synthetic Met. 139 649

    [33]

    Kronik L, Shapira Y 1999 Surf. Sci. Rep. 37 1

    [34]

    Li K Y, Liu T, Zhou B J, Wei S L, Yang W Y 2010 Acta Phys. -Chim. Sin. 26 403 (in Chinese) [李葵英, 刘通, 周冰晶, 魏赛玲, 杨伟勇 2010 物理化学学报 26 403]

    [35]

    Li K Y, Zhang H, Yang W Y, Wei S L, Wang D Y 2010 Mater. Chem. Phys. 123 98

    [36]

    Li K Y, Ding Y Y, Guo J, Wang D Y 2008 Mater. Chem. Phys. 112 1001

    [37]

    Li K Y, Song G J, Zhang J, Wang C M, Guo B 2011 J. Photoch. Photobio. A 218 213

    [38]

    Feng B, Yang J H, Cao J, Yang L L, Gao M, Wei M B, Liu Y, Song H 2013 Mater. Res. Bull. 48 1040

    [39]

    Arivazhagan V, Manonmani P M, Rajesh S 2013 J. Alloy. Compd. 577 431

    [40]

    Zhou X, Zeng X H, Yan X Q, Xia W W, Zhou Y X, Shen X S 2014 Mater. Res. Bull. 59 25

    [41]

    Zeng X H, Zhang W, Cui J Y, Zhou M, Chen H T 2014 Mater. Res. Bull. 50 359

    [42]

    Trajić J, Kostić R, Romčević N, Romčević M, Mitrić M, Lazović V, Balaž P, Stojanović 2014 J. Alloy. Compd. 637 401

    [43]

    Daz-Reyes J, Castillo-Ojeda R S, Snchez-Espndola R, Galvn-Arellano M, Zaca-Morn O 2014 Curr. Appl. Phys. 15 103

    [44]

    Sotillo B, Fernndez P, Piqueras J 2013 J. Alloy. Compd. 563 113

    [45]

    Peng J J, Liu S P, Wang L, Liu Z W, He Y Q 2009 J. Colloid Interface Sci. 338 578

    [46]

    Xue X H, Pan J, Xie H M, Wang J H, Zhang S 2009 Talanta 77 1808

    [47]

    Lu G W, An H Z, Chen Y, Huang J H, Zhang H Z, Xiang B, Zhao Q, Yu D P, Du W M 2005 J. Cryst. Growth 274 530

    [48]

    Freitas-Neto E S, Silva A C A, Silva S W, Morais P C, Gmez J A, Baffa O, Dantas N O 2013 J. Raman Spectrosc. 44 1022

    [49]

    Kim K, Lee Y M, Lee H B, Park Y, Bae T Y, Jung Y M, Choi C H, Shin K S 2010 J. Raman Spectrosc. 41 187

    [50]

    Fu X G, An H Z, Du W M 2005 Mater. Lett. 59 1484

    [51]

    Lee H, Kim M S, Suh S W 1991 J. Raman Spectrosc. 22 91

  • [1] Yan Xue-Wen, Zhang Jing-Lei, Zhang Zheng-Yu, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Gao Wei, Dong Jun. Enhancement mechanism of red up-conversion emission in single NaYbF4:2%Er3+@NaYbF4 micron core-shell structure. Acta Physica Sinica, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [2] Gao Wei, Luo Yi-Fan, Xing Yu, Ding Peng, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Red upconversion emission of Er3+ enhanced by building NaErF4@ NaYbF4:2%Er3+ core-shell structure. Acta Physica Sinica, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [3] Liu Li-Xian, Chen Bai-Song, Zhang Le, Zhang Xue-Shi, Huan Hui-Ting, Yin Xu-Kun, Shao Xiao-Peng, Ma Yu-Fei, Mandelis Andreas. Photoacoustic simultaneous detection of multiple trace gases for industrial park application. Acta Physica Sinica, 2022, 71(17): 170701. doi: 10.7498/aps.71.20220613
    [4] Hong Wen-Peng, Lan Jing-Rui, Li Hao-Ran, Li Bo-Yu, Niu Xiao-Juan, Li Yan. Reversal behavior of optical absorption rate of bimetallic core-shell nanoparticles based on finite-difference time-domain method. Acta Physica Sinica, 2021, 70(20): 207801. doi: 10.7498/aps.70.20210602
    [5] Dong Jun, Zhang Chen-Xue, Cheng Xiao-Tong, Xing Yu, Han Qing-Yan, Yan Xue-Wen, Qi Jian-Xia, Liu Ji-Hong, Yang Yi, Gao Wei. Enhancing red upconversion emission of Ho3+ ions through constructing NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+ core-shell structures. Acta Physica Sinica, 2021, 70(15): 154208. doi: 10.7498/aps.70.20210118
    [6] Liu Xiao-Wei, Song Hui, Guo Mei-Qing, Wang Gen-Wei, Chi Qing-Zhuo. Simulation and optimization of silicon/carbon core-shell structures in lithium-ion batteries based on electrochemical-mechanical coupling model. Acta Physica Sinica, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [7] Liu Bei, Lu Xi-Jian, Liu Xiao-Ning, Wu Yi-Pin, Zou Bin. Hot injection synthesis of core-shell upconversion nanoparticles for bioimaging application. Acta Physica Sinica, 2020, 69(14): 147801. doi: 10.7498/aps.69.20200347
    [8] Zhang Jia-Chen, Yu Wei-Xing, Xiao Fa-Jun, Zhao Jian-Lin. Tuning optical force of dielectric/metal core-shell placed above Au film. Acta Physica Sinica, 2020, 69(18): 184206. doi: 10.7498/aps.69.20200214
    [9] Zhang Yu-Wen, Deng Yong-He, Wen Da-Dong, Zhao He-Ping, Gao Ming. Diffusion of Al atoms and growth of Al nanoparticle clusters on surface of Ni substrate. Acta Physica Sinica, 2020, 69(13): 136601. doi: 10.7498/aps.69.20200120
    [10] Yan Xue-Wen, Wang Zhao-Jin, Wang Bo-Yang, Sun Ze-Yu, Zhang Chen-Xue, Han Qing-Yan, Qi Jian-Xia, Dong Jun, Gao Wei. Enhanced red upconversion fluorescence emission of Ho3+ ions in NaLuF4 nanocrystals through building core-shell structure. Acta Physica Sinica, 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [11] Cheng Gang, Cao Yuan, Liu Kun, Cao Ya-Nan, Chen Jia-Jin, Gao Xiao-Ming. Numerical calculation and optimization of photoacoustic cell for photoacoustic spectrometer. Acta Physica Sinica, 2019, 68(7): 074202. doi: 10.7498/aps.68.20182084
    [12] Zhou Yu, Cao Yuan, Zhu Gong-Dong, Liu Kun, Tan Tu, Wang Li-Jun, Gao Xiao-Ming. Detection of nitrous oxide by resonant photoacoustic spectroscopy based on mid infrared quantum cascade laser. Acta Physica Sinica, 2018, 67(8): 084201. doi: 10.7498/aps.67.20172696
    [13] Ren Lun, Li Kui-Ying, Cui Jie-Yuan, Zhao Jie. Photoelectron characteristics of ZnSe quantum dots-sensitized mesoporous La-doped nano-TiO2 film. Acta Physica Sinica, 2017, 66(6): 067301. doi: 10.7498/aps.66.067301
    [14] Xu Xue-Mei, Dai Peng, Yang Bing-Chu, Yin Lin-Zi, Cao Jian, Ding Yi-Peng, Cao Can. Weak photoacoustic signal detection in photoacoustic cell. Acta Physica Sinica, 2013, 62(20): 204303. doi: 10.7498/aps.62.204303
    [15] Zou Xiao-Cui, Wu Mu-Sheng, Liu Gang, Ouyang Chu-Ying, Xu Bo. First-principles study on the electronic structures of β-SiC/carbon nanotube core-shell structures. Acta Physica Sinica, 2013, 62(10): 107101. doi: 10.7498/aps.62.107101
    [16] Xu Xue-Mei, Li Ben-Rong, Yang Bing-Chu, Jiang Li, Yin Lin-Zi, Ding Yi-Peng, Cao Can. Gas measurement system of NO and NO2 based on photoacoustic spectroscopy. Acta Physica Sinica, 2013, 62(20): 200704. doi: 10.7498/aps.62.200704
    [17] Yu Rong, Jiang Yue-Song, Yu Lan, Ou Jun. Using scattered light to amplify the photoacoustic spectroscopic signatures of the main absorbing material in a weakly light-absorbing solid mixture. Acta Physica Sinica, 2013, 62(8): 087802. doi: 10.7498/aps.62.087802
    [18] Xue Zhen-Jie, Li Kui-Ying, Sun Zhen-Ping. Carrier transport characteristics in CdSe/CdS/Thioglycolic acid ligand quantum dots with a core-shell structure. Acta Physica Sinica, 2013, 62(6): 066801. doi: 10.7498/aps.62.066801
    [19] Shu Ming-Fei, Shang Yu-Li, Chen Wei, Cao Wan-Qiang. Influence of core-shell structure on dielectric behaviour in relaxor ferroelectrics. Acta Physica Sinica, 2012, 61(17): 177701. doi: 10.7498/aps.61.177701
    [20] Li Zhi-Hui, Yuan Chang-Ying, Meng Gui, Yan Zheng-Xin, Shang Li-Ping. Photoacoustic signal saturation characteristics of concentrated gases. Acta Physica Sinica, 2010, 59(10): 6908-6913. doi: 10.7498/aps.59.6908
Metrics
  • Abstract views:  6637
  • PDF Downloads:  204
  • Cited By: 0
Publishing process
  • Received Date:  16 October 2015
  • Accepted Date:  16 November 2015
  • Published Online:  05 February 2016

/

返回文章
返回
Baidu
map