Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of external electric field and Al content on g factor of wurtzite AlGaN/GaN quantum wells

Li Ming Yao Ning Feng Zhi-Bo Han Hong-Pei Zhao Zheng-Yin

Citation:

Effects of external electric field and Al content on g factor of wurtzite AlGaN/GaN quantum wells

Li Ming, Yao Ning, Feng Zhi-Bo, Han Hong-Pei, Zhao Zheng-Yin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we study the effects of external electric field and Al content on the transverse and longitudinal g-factor (g┴ and g//) and its anisotropy (δg) of wurtzite AlGaN/GaN quantum wells (QWs). The Δg┴=(g┴-g0)=g┴bulk + gw and Δg//=(g//-g0)=g//bulk are mainly contributed by the bulk structure (g//bulk and g┴bulk) respectively, but the difference between g//bulk and g┴bulk is small and almost remains unchanged when the external electric field and Al content are varied. So the anisotropy of the g factor in AlGaN/GaN QWs induced by the bulk wurtzite structure is small, while the anisotropy induced by the quantum confined effect (gw) is considerable. When the direction of the external electric field is the same as (opposite to) the polarization electric field, the magnitudes of g//bulk and g┴bulk both increase (decrease) with increasing external electric field. This is induced mainly by the variations of envelope function and confined energy with the electric field. With the external electric field changing from -1.5×108 V·m-1 to 1.5×108 V· m-1, the confined energy ε1 increases slowly, and the magnitude of the envelope function at the left heterointerface increases. So the contribution to Δg┴ from the heterointerface ΓInter is positive and increases slowly, and that from the well ΓW is negative and increases slowly in magnitude. The magnitude of ΓInter is larger than that of ΓW, but the magnitude of the latter increases more rapidly. All the above factors make the g-factor anisotropy δg>0 and decrease in magnitude with electric field increasing. With increasing Al content of the barrier, both β>1 (g┴bulk) and γ>1 (g//bulk) decrease if the strain effects are ignored (S1, 2=0), because the confined energy decreases and the peak of the envelope function shifts towards the left heterointerface. By considering the strain effects (S1, 2 ≠ 0), the magnitude of β>1 (g┴bulk) and γ>1 (g//bulk) increase with Al content increasing. The strain effect has a great influence on the confined potential V(z), leading to the rapid increase of β(z) when z > zp, which the situation for γ (z) is similar to. With increasing Al content, the magnitudes of ΓInter and ΓW both increase, but the magnitude of ΓInter is larger and increases more rapidly. Therefore δg increases slowly. The magnitude of Δ g┴ first decreases with increasing Al content, then it increases with Al content increasing, and since g┴bulk g-factor and its anisotropy in AlGaN/GaN QWs can be greatly modulated by the external electric field, the Al content in the barrier, the strain effects and the quantum confined effect. Results obtained here are of great importance for designing the spintronic devices.
      Corresponding author: Li Ming, mingli245@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61306012), the Aid Project for the Leading Young Teachers in Henan Provincial Institutions of Higher Education of China (Grant No. 2015GGJS-145), the Aid Project for the Leading Young Talents of XuChang University, China, the Natural Science Foundation of Henan Province, China (Grant No. 162300410237), and the Development Project for Science & Technology of Henan Province of China (Grant No. 172102210470).
    [1]

    Hanson R, Witkamp B, Vandersypen L M K, Willems van Beveren L H, Elzerman J M, Kouwenhoven L P 2003 Phys. Rev. Lett. 91 196802

    [2]

    Snelling M J, Flinn G P, Plaut A S, Harley R T, Tropper A C, Eccleston R, Phillips C C 1991 Phys. Rev. B 44 11345

    [3]

    Hannak R M, Oestreich M, Heberle A P, Rhle W W, Köhler K 1995 Solid State Commun. 93 313

    [4]

    Sirenko A A, Ruf T, Cardona M, Yakovlev D R, Ossau W, Waag A, Landwehr G 1997 Phys. Rev. B 56 2114

    [5]

    Le Jeune P, Robart D, Marie X, Amand T, Brosseau M, Barrau J, Kalevcih V 1997 Semicond. Sci. Technol. 12 380

    [6]

    Tomimoto S, Nozawa S, Terai Y, Kuroda S, Takita K, Masumoto Y 2010 Phys. Rev. B 81 125313

    [7]

    de Sousa R, Das Sarma S 2003 Phys. Rev. B 68 155330

    [8]

    Ivchenko E L, Kiselev A A 1992 Fiz. Tekh. Poluprovodn. (S. Peterburg) 26 1471 [1992 Sov. Phys. Semicond. 26 827]

    [9]

    Ivchenko E, Kiselev A, Willander M 1997 Solid State Commun. 102 375

    [10]

    Kiselev A A, Ivchenko E L, Rössler U 1998 Phys. Rev. B 58 16353

    [11]

    Kiselev A A, Kim K W, Ivchenko E L 1999 Phys. Status Solidi B 215 235

    [12]

    Pfeffer P, Zawadzki W 2006 Phys. Rev. B 74 233303

    [13]

    Roth L M, Lax B, Zwerdling S 1959 Phys. Rev. 114 90

    [14]

    de Dios-Leyva M, Reyes-Gómez E, Perdomo-Leiva C A, Oliveira L E 2006 Phys. Rev. B 73 085316

    [15]

    Toloza Sandoval M A, Ferreira da Silva A, de Andrada e Silva E A, La Rocca G C 2012 Phys. Rev. B 86 195302

    [16]

    Toloza Sandoval1 M A, de Andrada e Silva1 E A, Ferreira da Silva A, La Rocca G C 2016 Semicond. Sci. Technol. 31 115008

    [17]

    Jiang H W, Eli Y 2001 Phys. Rev. B 64 041307

    [18]

    Nitta J, Lin Y, Akazaki T, Koga T 2003 Appl. Phys. Lett. 83 4565

    [19]

    Litvinov V I 2003 Phys. Rev. B 68 155314

    [20]

    Litvinov V I 2006 Appl. Phys. Lett. 89 222108

    [21]

    Li M, Zhang R, Zhang Z, Yan W S, Liu B, Fu D Y, Zhao C Z, Xie Z L, Xiu X Q, Zheng Y D 2011 Superlattices Microstruct. 47 522

    [22]

    de Andrada e Silva E A, La Rocca G C, Bassani F 1994 Phys. Rev. B 50 8523

    [23]

    de Andrada e Silva E A, La Rocca G C, Bassani F 1997 Phys. Rev. B 55 16293

    [24]

    Bychkov Y A, Rashba E I 1984 J. Phys. C 17 6039

    [25]

    Yang W, Chang K 2006 Phys. Rev. B 73 113303

    [26]

    Yang W, Chang K 2006 Phys. Rev. B 74 193314

    [27]

    Pfeffer P, Zawadzki W 1999 Phys. Rev. B 59 R5312

    [28]

    Koga T, Nitta J, Akazaki T, Takayanagi H 2002 Phys. Rev. Lett. 89 046801

    [29]

    Schmult S, Manfra M J, Punnoose A, Sergent A M, Baldwin K W, Molnar R J 2006 Phys. Rev. B 74 033302

    [30]

    Li M, L Y H, Yang B H, Zhao Z Y, Sun G, Miao D D, Zhao C Z 2011 Solid State Commun. 151 1958

    [31]

    Li M, Feng Z B, Fan L B, Zhao Y L, Han H P, Feng T H 2016 J. Magnet. Magnet. Mater. 403 81

    [32]

    Zhao Z Y, Wang H L, Li M 2016 Acta Phys. Sin. 65 097101 (in Chinese) [赵正印, 王红玲, 李明 2016 65 097101]

    [33]

    Hao Y F 2014 J. Appl. Phys. 115 244308

    [34]

    Hao Y F 2015 J. Appl. Phys. 117 013911

    [35]

    Hao Y F, Chen Y H, Hao G D, Wang Z G 2009 Chin. Phys. Lett. 26 037103

    [36]

    Hao Y F, Chen Y H, Hao G D, Wang Z G 2009 Chin. Phys. Lett. 26 077104

    [37]

    Miao M S, Yan Q, van de Walle C G, Lou W K, Li L L, Chang K 2012 Phys. Rev. Lett. 109 186803

    [38]

    Zhang D, Lou W K, Miao M S, Zhang S C, Chang K 2013 Phys. Rev. Lett. 111 156402

    [39]

    Chuang S L Chang C S 1996 Phys. Rev. B 54 2491

    [40]

    Fabian J, Matos-Abiague A, Ertler C, Stano P, Žutić I 2007 Acta Phys. Slovaca 57 677

    [41]

    Yu L S, Qiao D J, Xing Q J, Lau S S, Boutros K S, Redwing J M 1998 Appl. Phys. Lett. 73 238

    [42]

    Kumagai M, Chuang S L, Ando H 1998 Phys. Rev. B 57 15303

    [43]

    Suzuki M, Uenoyama T, Yanase A 1995 Phys. Rev. B 52 8132

  • [1]

    Hanson R, Witkamp B, Vandersypen L M K, Willems van Beveren L H, Elzerman J M, Kouwenhoven L P 2003 Phys. Rev. Lett. 91 196802

    [2]

    Snelling M J, Flinn G P, Plaut A S, Harley R T, Tropper A C, Eccleston R, Phillips C C 1991 Phys. Rev. B 44 11345

    [3]

    Hannak R M, Oestreich M, Heberle A P, Rhle W W, Köhler K 1995 Solid State Commun. 93 313

    [4]

    Sirenko A A, Ruf T, Cardona M, Yakovlev D R, Ossau W, Waag A, Landwehr G 1997 Phys. Rev. B 56 2114

    [5]

    Le Jeune P, Robart D, Marie X, Amand T, Brosseau M, Barrau J, Kalevcih V 1997 Semicond. Sci. Technol. 12 380

    [6]

    Tomimoto S, Nozawa S, Terai Y, Kuroda S, Takita K, Masumoto Y 2010 Phys. Rev. B 81 125313

    [7]

    de Sousa R, Das Sarma S 2003 Phys. Rev. B 68 155330

    [8]

    Ivchenko E L, Kiselev A A 1992 Fiz. Tekh. Poluprovodn. (S. Peterburg) 26 1471 [1992 Sov. Phys. Semicond. 26 827]

    [9]

    Ivchenko E, Kiselev A, Willander M 1997 Solid State Commun. 102 375

    [10]

    Kiselev A A, Ivchenko E L, Rössler U 1998 Phys. Rev. B 58 16353

    [11]

    Kiselev A A, Kim K W, Ivchenko E L 1999 Phys. Status Solidi B 215 235

    [12]

    Pfeffer P, Zawadzki W 2006 Phys. Rev. B 74 233303

    [13]

    Roth L M, Lax B, Zwerdling S 1959 Phys. Rev. 114 90

    [14]

    de Dios-Leyva M, Reyes-Gómez E, Perdomo-Leiva C A, Oliveira L E 2006 Phys. Rev. B 73 085316

    [15]

    Toloza Sandoval M A, Ferreira da Silva A, de Andrada e Silva E A, La Rocca G C 2012 Phys. Rev. B 86 195302

    [16]

    Toloza Sandoval1 M A, de Andrada e Silva1 E A, Ferreira da Silva A, La Rocca G C 2016 Semicond. Sci. Technol. 31 115008

    [17]

    Jiang H W, Eli Y 2001 Phys. Rev. B 64 041307

    [18]

    Nitta J, Lin Y, Akazaki T, Koga T 2003 Appl. Phys. Lett. 83 4565

    [19]

    Litvinov V I 2003 Phys. Rev. B 68 155314

    [20]

    Litvinov V I 2006 Appl. Phys. Lett. 89 222108

    [21]

    Li M, Zhang R, Zhang Z, Yan W S, Liu B, Fu D Y, Zhao C Z, Xie Z L, Xiu X Q, Zheng Y D 2011 Superlattices Microstruct. 47 522

    [22]

    de Andrada e Silva E A, La Rocca G C, Bassani F 1994 Phys. Rev. B 50 8523

    [23]

    de Andrada e Silva E A, La Rocca G C, Bassani F 1997 Phys. Rev. B 55 16293

    [24]

    Bychkov Y A, Rashba E I 1984 J. Phys. C 17 6039

    [25]

    Yang W, Chang K 2006 Phys. Rev. B 73 113303

    [26]

    Yang W, Chang K 2006 Phys. Rev. B 74 193314

    [27]

    Pfeffer P, Zawadzki W 1999 Phys. Rev. B 59 R5312

    [28]

    Koga T, Nitta J, Akazaki T, Takayanagi H 2002 Phys. Rev. Lett. 89 046801

    [29]

    Schmult S, Manfra M J, Punnoose A, Sergent A M, Baldwin K W, Molnar R J 2006 Phys. Rev. B 74 033302

    [30]

    Li M, L Y H, Yang B H, Zhao Z Y, Sun G, Miao D D, Zhao C Z 2011 Solid State Commun. 151 1958

    [31]

    Li M, Feng Z B, Fan L B, Zhao Y L, Han H P, Feng T H 2016 J. Magnet. Magnet. Mater. 403 81

    [32]

    Zhao Z Y, Wang H L, Li M 2016 Acta Phys. Sin. 65 097101 (in Chinese) [赵正印, 王红玲, 李明 2016 65 097101]

    [33]

    Hao Y F 2014 J. Appl. Phys. 115 244308

    [34]

    Hao Y F 2015 J. Appl. Phys. 117 013911

    [35]

    Hao Y F, Chen Y H, Hao G D, Wang Z G 2009 Chin. Phys. Lett. 26 037103

    [36]

    Hao Y F, Chen Y H, Hao G D, Wang Z G 2009 Chin. Phys. Lett. 26 077104

    [37]

    Miao M S, Yan Q, van de Walle C G, Lou W K, Li L L, Chang K 2012 Phys. Rev. Lett. 109 186803

    [38]

    Zhang D, Lou W K, Miao M S, Zhang S C, Chang K 2013 Phys. Rev. Lett. 111 156402

    [39]

    Chuang S L Chang C S 1996 Phys. Rev. B 54 2491

    [40]

    Fabian J, Matos-Abiague A, Ertler C, Stano P, Žutić I 2007 Acta Phys. Slovaca 57 677

    [41]

    Yu L S, Qiao D J, Xing Q J, Lau S S, Boutros K S, Redwing J M 1998 Appl. Phys. Lett. 73 238

    [42]

    Kumagai M, Chuang S L, Ando H 1998 Phys. Rev. B 57 15303

    [43]

    Suzuki M, Uenoyama T, Yanase A 1995 Phys. Rev. B 52 8132

  • [1] Xue Wen-Ming, Li Jin, He Chao-Yu, Ouyang Tao, Luo Chao-Bo, Tang Chao, Zhong Jian-Xin. Giant and tunable Rashba spin splitting and quantum spin Hall effect in H-Pb-Cl. Acta Physica Sinica, 2023, 72(5): 057101. doi: 10.7498/aps.72.20221493
    [2] Wang Zhi-Mei, Wang Hong, Xue Nai-Tao, Cheng Gao-Yan. Quantum coherence in spin-orbit coupled quantum dots system. Acta Physica Sinica, 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [3] Hong Lan, Ge Jun, Shuang Shan, Liu Da-Quan. Influence of Rashba effect and Zeeman effect on properties of bound magnetopolaron in an anisotropic quantum dot. Acta Physica Sinica, 2022, 71(1): 016301. doi: 10.7498/aps.71.20210803
    [4] Sun Hai-Ming. Rashba effect and flat band property in one-dimensional helical Se atomic chain. Acta Physica Sinica, 2022, 71(14): 147102. doi: 10.7498/aps.71.20220646
    [5] Su Xin, Huang Tian-Ye, Wang Jun-Zhuan, Liu Yuan, Zheng You-Liao, Shi Yi, Wang Xiao-Mu. Circular photogalvanic effect. Acta Physica Sinica, 2021, 70(13): 138501. doi: 10.7498/aps.70.20210498
    [6] Influence of Rashba effect and Zeeman effect on the properties of bound magnetopolaron in an Anisotropic Quantum Dot. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210803
    [7] Wei Ying-Qiang, Xu Lei, Peng Qi-Ming, Wang Jian-Pu. Rashba effect in perovskites and its influences on carrier recombination. Acta Physica Sinica, 2019, 68(15): 158506. doi: 10.7498/aps.68.20190675
    [8] Liang Tao, Li Ming. Integer quantum Hall effect in a spin-orbital coupling system. Acta Physica Sinica, 2019, 68(11): 117101. doi: 10.7498/aps.68.20190037
    [9] Meng Kang-Kang, Zhao Xu-Peng, Miao Jun, Xu Xiao-Guang, Zhao Jian-Hua, Jiang Yong. Topological Hall effect in ferromagnetic/non-ferromagnetic metals heterojunctions. Acta Physica Sinica, 2018, 67(13): 131202. doi: 10.7498/aps.67.20180369
    [10] Yang Yuan,  Chen Shuai,  Li Xiao-Bing. Topological phase transitions in square-octagon lattice with Rashba spin-orbit coupling. Acta Physica Sinica, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [11] Geng Hu, Ji Qing-Shan, Zhang Cun-Xi, Wang Rui. Time-reversal-symmetry broken quantum spin Hall in Lieb lattice. Acta Physica Sinica, 2017, 66(12): 127303. doi: 10.7498/aps.66.127303
    [12] Zhao Zheng-Yin, Wang Hong-Ling, Li Ming. Rashba spin splitting in the Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N quantum well. Acta Physica Sinica, 2016, 65(9): 097101. doi: 10.7498/aps.65.097101
    [13] Gong Shi-Jing, Duan Chun-Gang. Recent progress in Rashba spin orbit coupling on metal surface. Acta Physica Sinica, 2015, 64(18): 187103. doi: 10.7498/aps.64.187103
    [14] Chen Yan-Li, Peng Xiang-Yang, Yang Hong, Chang Sheng-Li, Zhang Kai-Wang, Zhong Jian-Xin. Stacking effects in topological insulator Bi2Se3:a first-principles study. Acta Physica Sinica, 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [15] Wei Lai-Ming, Zhou Yuan-Ming, Yu Guo-Lin, Gao Kuang-Hong, Liu Xin-Zhi, Lin Tie, Guo Shao-Ling, Dai Ning, Chu Jun-Hao, Austing David Guy. Effective g-factor in high-mobility InGaAs/InP Quantum well. Acta Physica Sinica, 2012, 61(12): 127102. doi: 10.7498/aps.61.127102
    [16] Xu Tian-Ning, Wu Hui-Zhen, Sui Cheng-Hua. Rashba effect in PbTe/PbSrTe asymmetric quantum wells. Acta Physica Sinica, 2008, 57(12): 7865-7871. doi: 10.7498/aps.57.7865
    [17] Yang Liu, Yin Chun-Hao, Jiao Yang, Zhang Lei, Song Ning, Ru Rui-Peng. Spectrum structure and g factor of electron paramagnetic resonance of LiCoO2 crystal doped with Ni. Acta Physica Sinica, 2006, 55(4): 1991-1996. doi: 10.7498/aps.55.1991
    [18] Xu Hai-Hong, Jiao Zhong-Xing, Liu Xiao-Dong, Lei Liang, Wen Jin-Hui, Wang Hui, Lin Wei-Zhu, Lai Tian-Shu. Studies on the temperature and energy dependence of g factor in GaAs by femtosecond laser absorption quantum beats. Acta Physica Sinica, 2006, 55(5): 2618-2622. doi: 10.7498/aps.55.2618
    [19] Zhang Hong-Mei, Ma Dong-Ping, Liu De. . Acta Physica Sinica, 2002, 51(7): 1554-1558. doi: 10.7498/aps.51.1554
    [20] Zhou Qing-Chun, Wang Jia-Fu, Xu Rong-Qing. . Acta Physica Sinica, 2002, 51(7): 1639-1644. doi: 10.7498/aps.51.1639
Metrics
  • Abstract views:  5702
  • PDF Downloads:  149
  • Cited By: 0
Publishing process
  • Received Date:  12 October 2017
  • Accepted Date:  11 December 2017
  • Published Online:  05 March 2018

/

返回文章
返回
Baidu
map