Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation on voltaic effect based on one-dimensional TiO2 nanotube array thin film

Wang Na Ma Yang Chen Chang-Song Chen Jiang San Hai-Sheng Chen Ji-Ge Cheng Zheng-Dong

Citation:

Investigation on voltaic effect based on one-dimensional TiO2 nanotube array thin film

Wang Na, Ma Yang, Chen Chang-Song, Chen Jiang, San Hai-Sheng, Chen Ji-Ge, Cheng Zheng-Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • This work is to develop a high-reliability long-life high-conversion-efficiency radio-isotope microbattery in order to meet power requirements of micro-electromechanical systems, micro-sensors, micro-actuators, wireless sensing net, and other electron devices working in harsh circumstances, such as polar, desert, subsea, outer surface, etc. Compared with traditional dry batteries, chemical batteries, fuel cells and solar cells, the radioactive isotope batteries have long service life, higher energy density, strong adaptability to environment, good work stability, no maintenance, and miniaturized size, etc. These advantages make the voltaic battery an attractive alternative. In this paper we present a voltaic battery with enhanced voltaic effect by using a wide-bandgap semiconductor TiO2 nanotube array thin film. An electrochemical anodic oxidation method is used to prepare the vertically oriented and highly ordered TiO2 nanotube array film on Ti plate. Electrolyte solution consists of ammonium fluoride, ethylene glycol, and deionized water. The structure (TiO2 nanotube array with diameter about 80-100 nm, wall thickness about 15-25 nm, and length 9 m) is characterized by field emission scanning electron microscope. The microstructure of the TiO2 nanotube array is characterized using X-ray diffraction. The effects of annealing condition on optical and electrical properties are studied. The electrical property is characterized by Keithley model 2450 source meter semiconductor characterization system in dark at room temperature. The voltaic batteries are assembled as a sandwiched structure (63Ni/TiO2 nanotube arrays film/Ti) using a radioisotope 63Ni plate and TiO2 nanotube array films. The experimental results show that the black TiO2 nanotube array film annealed at 450 ℃ in argon atmosphere could creates high visible-ultraviolet absorption due to a great many of oxygen vacancy defects generated in TiO2 nanotube array film. The oxygen vacancy signals are found by electron spin resonance. Compared with the planar structure, the nano-porous array structure has strong absorption to particles:most of the particles enter into the pores and are reflected or absorbed by the surface of the tube walls. With a 10 mCi 63Ni radiation source, the voltaic battery using black TiO2 nanotube array film can generate an open-circuited voltage of 1.02 V, a short-circuited current of 75.52 nA, and a maximum effective conversion efficiency of 22.48%.
      Corresponding author: San Hai-Sheng, sanhs@xmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61574117) and the Shenzhen Science and Technology Planning Project, China (Grant No. JCYJ20170306141006600).
    [1]

    Zhou Y, Zhang S X, Li G P 2017 Chin. Sci. Bull. 62 1831 (in Chinese) [周毅, 张世旭, 李公平 2017 科学通报 62 1831]

    [2]

    Mark A P, Charles L W, Matthew L W, Eric D L, Robert J S, Denis A W 2014 Prog. Nucl. Energ. 75 117

    [3]

    Gao H, Luo S Z, Zhang H M, Wang H Y 2012 Acta Phys. Sin. 61 176101 (in Chinese)[高晖, 罗顺忠, 张华明, 王和义 2012 61 176101]

    [4]

    Rinehart G H 2001 Prog. Nucl. Energ. 39 305

    [5]

    Bower K E, Barbanel Y A, Shreter Y G, Bohnert G W 2002 Polymer, Phosphors, and Voltaics for Radioisotope Microbatteries (Boca Raton Florida:CRC Press) p38

    [6]

    Larry C O, Peter C, Bret J E 2012 Phys. Today 65 35

    [7]

    Zhang H M, Hu R, Wang G Q, Gao H, Liu G P, Luo S Z 2013 At. Energ. Sci. Technol. 47 490 (in Chinese)[张华明, 胡睿, 王关全, 高晖, 刘国平, 罗顺忠 2013 原子能科学技术 47 490]

    [8]

    Luo S Z, Wang G Q, Zhang H M 2011 J. Isot. 24 1 (in Chinese)[罗顺忠, 王关全, 张华明 2011 同位素 24 1]

    [9]

    Clarkson J P, Sun W, Hirschman K D, Gadeken L L 2007 Phys. Status Solid A 204 1536

    [10]

    Liu B J, Chen K P, Kherani N P, Zukotynski S 2009 Appl. Phys. Lett. 95 233112

    [11]

    Sun W, Kherani N P, Hirschman K D, Gadeken L L, Fauchet P M 2005 Adv. Mater. 17 1230

    [12]

    Olsen L C 1973 Energ. Convers. Manage. 13 117

    [13]

    Eiting C, Krishnamoorthy V, Rodgers S, George T, Robertson J D, Brockman J 2006 Appl. Phys. Lett. 88 064101

    [14]

    Cheng Z, Chen X, San H, Feng Z, Liu B 2012 J. Micromech. Microengineer. 22 074011

    [15]

    Tang X, Liu Y, Ding D, Chen D 2012 Sci. China: Technol. Sci. 55 659

    [16]

    Qiao D Y, Chen X J, Ren Y, Yuan W Z 2011 J. Microelectromech. Syst. 20 685

    [17]

    Lee K, Mazare A, Schmuki P 2014 Chem. Rev. 114 9385

    [18]

    Hu B, Lin J, Chen X F 2012 Semicond. Optoelectron. 33 648 (in Chinese) [胡奔, 林佳, 陈险峰 2012 半导体光电 33 648]

    [19]

    Zhang L F, Ma J P, Zhang L, Zhang H X, Yan S J, Yao L N, Luo Z F 2015 J. Isotopes 28 25

    [20]

    Bavykin D V, Walsh F C 2010 Mater. Today 13 66

    [21]

    Diebold iebold U 2003 Surf. Sci. Rep. 48 53

    [22]

    Lu P W 1996 Fundamentals of Inorganic Materials Science (1st Ed.) (Wuhan:Wuhan University of Technology Press) pp60-62 (in Chinese)[陆佩文 1996 无机材料科学基础 (第1版) (武汉:武汉工业大学出版社) 第6062页]

    [23]

    Wang G, Wang H Y, Ling Y C, Tang Y C, Yang X Y Robert C F, Wang C C, Zhang J Z, Yat L 2011 Nano Lett. 11 3026

    [24]

    Paramasivam I, Jha H, Liu N, Schmuki P 2012 Small 8 3073

    [25]

    Beard M C 2011 J. Phys. Chem. Lett. 2 1282

    [26]

    Smith Y R, Sarma B, Mohanty S K, Misra M 2012 ACS Appl. Mater. Interfaces 4 5883

  • [1]

    Zhou Y, Zhang S X, Li G P 2017 Chin. Sci. Bull. 62 1831 (in Chinese) [周毅, 张世旭, 李公平 2017 科学通报 62 1831]

    [2]

    Mark A P, Charles L W, Matthew L W, Eric D L, Robert J S, Denis A W 2014 Prog. Nucl. Energ. 75 117

    [3]

    Gao H, Luo S Z, Zhang H M, Wang H Y 2012 Acta Phys. Sin. 61 176101 (in Chinese)[高晖, 罗顺忠, 张华明, 王和义 2012 61 176101]

    [4]

    Rinehart G H 2001 Prog. Nucl. Energ. 39 305

    [5]

    Bower K E, Barbanel Y A, Shreter Y G, Bohnert G W 2002 Polymer, Phosphors, and Voltaics for Radioisotope Microbatteries (Boca Raton Florida:CRC Press) p38

    [6]

    Larry C O, Peter C, Bret J E 2012 Phys. Today 65 35

    [7]

    Zhang H M, Hu R, Wang G Q, Gao H, Liu G P, Luo S Z 2013 At. Energ. Sci. Technol. 47 490 (in Chinese)[张华明, 胡睿, 王关全, 高晖, 刘国平, 罗顺忠 2013 原子能科学技术 47 490]

    [8]

    Luo S Z, Wang G Q, Zhang H M 2011 J. Isot. 24 1 (in Chinese)[罗顺忠, 王关全, 张华明 2011 同位素 24 1]

    [9]

    Clarkson J P, Sun W, Hirschman K D, Gadeken L L 2007 Phys. Status Solid A 204 1536

    [10]

    Liu B J, Chen K P, Kherani N P, Zukotynski S 2009 Appl. Phys. Lett. 95 233112

    [11]

    Sun W, Kherani N P, Hirschman K D, Gadeken L L, Fauchet P M 2005 Adv. Mater. 17 1230

    [12]

    Olsen L C 1973 Energ. Convers. Manage. 13 117

    [13]

    Eiting C, Krishnamoorthy V, Rodgers S, George T, Robertson J D, Brockman J 2006 Appl. Phys. Lett. 88 064101

    [14]

    Cheng Z, Chen X, San H, Feng Z, Liu B 2012 J. Micromech. Microengineer. 22 074011

    [15]

    Tang X, Liu Y, Ding D, Chen D 2012 Sci. China: Technol. Sci. 55 659

    [16]

    Qiao D Y, Chen X J, Ren Y, Yuan W Z 2011 J. Microelectromech. Syst. 20 685

    [17]

    Lee K, Mazare A, Schmuki P 2014 Chem. Rev. 114 9385

    [18]

    Hu B, Lin J, Chen X F 2012 Semicond. Optoelectron. 33 648 (in Chinese) [胡奔, 林佳, 陈险峰 2012 半导体光电 33 648]

    [19]

    Zhang L F, Ma J P, Zhang L, Zhang H X, Yan S J, Yao L N, Luo Z F 2015 J. Isotopes 28 25

    [20]

    Bavykin D V, Walsh F C 2010 Mater. Today 13 66

    [21]

    Diebold iebold U 2003 Surf. Sci. Rep. 48 53

    [22]

    Lu P W 1996 Fundamentals of Inorganic Materials Science (1st Ed.) (Wuhan:Wuhan University of Technology Press) pp60-62 (in Chinese)[陆佩文 1996 无机材料科学基础 (第1版) (武汉:武汉工业大学出版社) 第6062页]

    [23]

    Wang G, Wang H Y, Ling Y C, Tang Y C, Yang X Y Robert C F, Wang C C, Zhang J Z, Yat L 2011 Nano Lett. 11 3026

    [24]

    Paramasivam I, Jha H, Liu N, Schmuki P 2012 Small 8 3073

    [25]

    Beard M C 2011 J. Phys. Chem. Lett. 2 1282

    [26]

    Smith Y R, Sarma B, Mohanty S K, Misra M 2012 ACS Appl. Mater. Interfaces 4 5883

  • [1] Di Shu-Hong, Zhang Yang, Yang Hui-Jing, Cui Nai-Zhong, Li Yan-Kun, Liu Hui-Yuan, Li Ling-Li, Shi Feng-Liang, Jia Yu-Xuan. Quantitative study on isotope effect of rubidium clusters. Acta Physica Sinica, 2023, 72(18): 182101. doi: 10.7498/aps.72.20230778
    [2] Zhang Yong-Quan, Yao An-Quan, Yang Liu, Zhu Kai, Cao Dian-Xue. Preparation and electrochemical performance of sodium manganese oxides as cathode materials for aqueous Mg-ion batteries. Acta Physica Sinica, 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [3] Wen Huan-Fei, Yasuhiro Sugawara, Li Yan-Jun. Effects of subsurface charge on surface defect and adsorbate of rutile TiO2 (110). Acta Physica Sinica, 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [4] Xu Han, Zhang Lu, Dang Zheng. Coupling mechanism of mass transport and electrochemical reaction within patterned anode of solid oxide fuel cell. Acta Physica Sinica, 2020, 69(9): 098801. doi: 10.7498/aps.69.20191697
    [5] Zhu Wei-Jun, Chen Jin-Xin, Gao Yu-Han, Yang De-Ren, Ma Xiang-Yang. Electroluminescence from silicon-based light-emitting device with erbium-doped TiO2 films: Enhancement effect of ytterbium codoping. Acta Physica Sinica, 2019, 68(12): 124204. doi: 10.7498/aps.68.20190300
    [6] Xu Ya-Ming, Wang Li-Dan, Duan Shu-Kai. A memristor-based chaotic system and its field programmable gate array implementation. Acta Physica Sinica, 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [7] Zhu Xue-Wen, Xu Li-Chun, Liu Rui-Ping, Yang Zhi, Li Xiu-Yan. N-F co-doped in titaninum dioxide nanotube of the anatase (101) surface: a first-principles study. Acta Physica Sinica, 2015, 64(14): 147103. doi: 10.7498/aps.64.147103
    [8] Ren Gui-Ming, Zheng Yuan-Yuan, Wang Ding, Wang Lin, Chen Xiao-Hong, Wang Ling, Ma Min, Liu Hua-Bing. Isotope effect of trihydride aluminum oxide. Acta Physica Sinica, 2014, 63(23): 233104. doi: 10.7498/aps.63.233104
    [9] Yang Su-Hong, Zhao Li-Shan, Wang Qiang, Shen Rong, Sun Gang, Li Chen-Xi, Lu Kun-Quan. Composition analysis and mechanism approach of the electrorheological fluids based on the precursor of TO2. Acta Physica Sinica, 2013, 62(16): 164701. doi: 10.7498/aps.62.164701
    [10] Xue Jiang, Pan Feng-Ming, Pei Yu. Optoelectrical properties of tantalum-doped TiO2 thin films. Acta Physica Sinica, 2013, 62(15): 158103. doi: 10.7498/aps.62.158103
    [11] Electron-beam induced abnormal expansion in a silica-shelled gallium microball-nanotube structure (Retracted Article). Acta Physica Sinica, 2012, 61(18): 186102. doi: 10.7498/aps.61.186102
    [12] Li Tian-Jing, Li Gong-Ping, Ma Jun-Ping, Gao Xing-Xin. Effect of Co+ implantation on structural and optical properties in single-crystal TiO2. Acta Physica Sinica, 2011, 60(11): 116102. doi: 10.7498/aps.60.116102
    [13] Cao Si, Gong Jia, Zhong Cheng, Li Jin, Jiang Yi-Ming. Transport mechanism of copper thin film oxidation by isotopic labeling. Acta Physica Sinica, 2011, 60(7): 078101. doi: 10.7498/aps.60.078101
    [14] Hou Xian-Hua, Yu Hong-Wen, Hu She-Jun. preparation and properties of Sn-Al thin-film electrode material for lithium ion batteries. Acta Physica Sinica, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [15] Gong Jia, Jiang Yi-Ming, Zhong Cheng, Deng Bo, Liu Ping, Li Jin. Revealing the transport mechanisms of silicon oxidation by H218O/H216O isotopic labeling. Acta Physica Sinica, 2009, 58(2): 1305-1309. doi: 10.7498/aps.58.1305
    [16] Liu Jian-Ye, Guo Wen-Jun, Zuo Wei, Lee Xi-Guo. Isospin effect of nucleon-nucleon cross section on the isoscaling parameter α. Acta Physica Sinica, 2008, 57(9): 5458-5463. doi: 10.7498/aps.57.5458
    [17] Cui Yong-Feng, Yuan Zhi-Hao. Structural phase transformation and optical absorption of capped TiO2 nanoparticles. Acta Physica Sinica, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [18] Qian Lei, Teng Feng, Xu Zheng, Quan Shan-Yu, Liu De-Ang, Wang Yuan-Min, Wang Yong-Sheng, Xu Xu-Rong. Influence of doping with titania nanotubes on performance of polymer light-emitting diodes. Acta Physica Sinica, 2006, 55(2): 929-934. doi: 10.7498/aps.55.929
    [19] LI WEN-FEI, ZHANG FENG-SHOU, CHEN LIE-WEN. CHEMICAL INSTABILITY AND ISOSPIN EFFECTS IN ISOTOPIC DISTRIBUTIONS. Acta Physica Sinica, 2001, 50(6): 1040-1045. doi: 10.7498/aps.50.1040
    [20] WEN XIAO-MING, XIE CHONG-WEI, LIN LI-ZHONG, CUI YONG-JIE. SURFACE CHARACTER OF TITANIA CHANGED BY EXCIMER LASER. Acta Physica Sinica, 1997, 46(8): 1652-1657. doi: 10.7498/aps.46.1652
Metrics
  • Abstract views:  6507
  • PDF Downloads:  207
  • Cited By: 0
Publishing process
  • Received Date:  26 August 2017
  • Accepted Date:  13 December 2017
  • Published Online:  20 February 2019

/

返回文章
返回
Baidu
map