搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现

许雅明 王丽丹 段书凯

引用本文:
Citation:

磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现

许雅明, 王丽丹, 段书凯

A memristor-based chaotic system and its field programmable gate array implementation

Xu Ya-Ming, Wang Li-Dan, Duan Shu-Kai
PDF
导出引用
  • 忆阻器作为混沌系统的非线性部分, 能够提高混沌系统的信号随机性和复杂度, 减小系统的物理尺寸. 本文将磁控二氧化钛忆阻器应用到一个新的三维自治混沌系统中, 通过理论推导和数值仿真, 从平衡点的稳定性、 Lyapunov指数谱、庞加莱截面和功率谱等方面研究了该系统的动力学特性, 并详细讨论了不同参数变化对系统相图和平衡点稳定性的影响. 有趣的是, 在改变参数的情况下, 系统的吸引子会产生翻转、混沌程度加剧和混叠的现象, 说明该忆阻混沌系统具有丰富的动力学行为. 此外, 本文将改进的牛顿迭代法运用于现场可编程逻辑门阵列 技术中, 巧妙设计出一种只迭代3次就能达到所需精度的开方运算器, 从而硬件实现了该忆阻混沌系统. 这突破了以往忆阻器混沌系统只能在计算机模拟平台仿真的瓶颈, 为进一步研究忆阻混沌系统及其在保密通信、信息处理中的应用提供了参考.
    A nanoscale memristor can replace the nonlinear part of a chaotic system, which can greatly reduce the physical size of the chaotic system. More importantly, it can enhance the complexity of the chaotic system and the randomness of signals. In this paper, a new memristor-based chaotic system is designed based on a new three-dimensional autonomous chaotic system. In order to study the complex dynamic characteristics of the memristive system, the chaotic system is investigated by the theoretical derivation, numerical simulation, stabilization of equilibrium points, and Lyapunov exponent spectrum. The influences of different parameters on the phase diagram and the stability of equilibrium point of this system are also discussed in detail. It is interesting that when system parameters a and c take different values, the location and stability of the equilibrium point of the system will be changed, then two scrolls of the system will be overturned at a different angle, and it will produce a different degree of aliasing between the two scrolls. Parameter b has a large variable range, when it is changed, and the system will transform into three kinds of classical chaotic systems defined by Vaněček and Celikovsk. These indicate that the memristor-based chaotic system has a lot of valuable dynamic behaviors, so it has applications in the field of secure communication, information processing etc. Field programmable gate array (FPGA) technology has a large capacity and high reliability, which is widely used in modern digital signal processing. And with the development of FPGA technology, applying FPGA technology to realizing the chaotic systems has gradually become a hot topic. Moreover, the improved Newton iteration method is used to design a square root operator of memristor in this paper by using verilog hardware description language (verilog HDL) which only needs three times iteration to reach the required accuracy. The results of FPGA hardware are consistent with the numerical simulation results. It breaks through the previous bottleneck that the chaotic system based on titanium dioxide memristor can only be simulated in computer, which is of great significance for further studing of memristor, and provides a reference for further research on the memristor-based chaotic system and applications in secure communication and information processing.
      通信作者: 王丽丹, ldwang@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61372139, 61571372)、新世纪优秀人才支持计划(批准号: 教技函[2013]47号)和中央高校基本业务费专项资金 (批准号: XDJK2016A001, XDJK2014A009)资助的课题.
      Corresponding author: Wang Li-Dan, ldwang@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61372139, 61571372), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. [2013]47), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. XDJK2016A001, XDJK2014A009).
    [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Chua L O 1971 IEEE Trans. Circ. Theor. 18 507

    [3]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [4]

    Kavehei O, Iqbal A, Kim Y S, Eshraghian K, Al-Sarawi S F, Abbott D 2010 Proc. R. Soc. A 466 2175

    [5]

    Biolek Z, Biolek D, Biolkov V 2009 Radio. Eng. 18 210

    [6]

    Pershin Y V, Di V M 2008 Phys. Rev. B 78 3309

    [7]

    Jo S H, Kim K H, Lu W 2009 Nano Lett. 9 870

    [8]

    Yang J, Wang L D, Duan S K 2016 Sci. China Inf. Sci. 46 391

    [9]

    Wang L D, Li H F, Duan S K, Huang T W, Wang H M 2015 Neurocomputing 171 23

    [10]

    Wang L D, Duan M T, Duan S K, Hu X F 2014 Sci. China Inf. Sci. 44 920

    [11]

    Hu X F, Chen G R, Duan S K, Feng G 2014 In Memristor Networks (Springer International Publishing) pp351-364

    [12]

    Muthuswamy B, Kokate P P 2009 IETE Tech. Rev. 26 417

    [13]

    Wang L D, Drakakis E, Duan S K, He P F, Liao X F 2012 Int. J. Bifurcat. Chaos 22 1250205

    [14]

    Zhong G Q, Man K F, Chen G R 2002 Int. J. Bifurcat. Chaos 12 2907

    [15]

    Bao B C, Shi G D, Xu J P, Liu Z, Pan S H 2011 Sci. China Tech. Sci. 54 2180

    [16]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [17]

    Min G Q, Wang L D, Duan S K 2015 Acta Phys. Sin. 64 210507 (in Chinese) [闵国旗, 王丽丹, 段书凯 2015 64 210507]

    [18]

    Li H F, Wang L D, Duan S K 2014 Int. J. Bifurcat. Chaos 24 7

    [19]

    Wang L D, Duan S K 2012 Abstr. Appl. Anal. 2012 2012

    [20]

    Li C L, Yu S M, Luo X S 2012 Acta Phys. Sin. 61 110502 (in Chinese) [李春来, 禹思敏, 罗晓曙 2012 61 110502]

    [21]

    Wang G Y, Qiu S S, Li H W, Li C F, Zheng Y 2006 Chin. Phys. 15 2872

    [22]

    Wang Z L 2008 Comput. Eng. Appl. 44 84 (in Chinese) [王忠林 2008 计算机工程与应用 44 84]

    [23]

    Shao S Y, Min F H, Wu X H, Zhang X G 2014 Acta Phys. Sin. 63 060501 (in Chinese) [邵书义, 闵富红, 吴薛红, 张新国 2014 63 060501]

    [24]

    Yu S M 2011 Chaotic Systems and Chaotic Circuits (Xi'an: Xi'an Electronic Sience and Technology University Press) pp126-148 (in Chinese) [禹思敏 2011 混沌系统与混沌电路 (西安: 西安电子科技大学出版社) 第126-148页]

    [25]

    Vaněčk A, Člikovsk S 1996 Control Systems: From Linear Analysis to Synthesis of Chaos (London: Prentice Hall International Ltd.) pp10-121

  • [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Chua L O 1971 IEEE Trans. Circ. Theor. 18 507

    [3]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [4]

    Kavehei O, Iqbal A, Kim Y S, Eshraghian K, Al-Sarawi S F, Abbott D 2010 Proc. R. Soc. A 466 2175

    [5]

    Biolek Z, Biolek D, Biolkov V 2009 Radio. Eng. 18 210

    [6]

    Pershin Y V, Di V M 2008 Phys. Rev. B 78 3309

    [7]

    Jo S H, Kim K H, Lu W 2009 Nano Lett. 9 870

    [8]

    Yang J, Wang L D, Duan S K 2016 Sci. China Inf. Sci. 46 391

    [9]

    Wang L D, Li H F, Duan S K, Huang T W, Wang H M 2015 Neurocomputing 171 23

    [10]

    Wang L D, Duan M T, Duan S K, Hu X F 2014 Sci. China Inf. Sci. 44 920

    [11]

    Hu X F, Chen G R, Duan S K, Feng G 2014 In Memristor Networks (Springer International Publishing) pp351-364

    [12]

    Muthuswamy B, Kokate P P 2009 IETE Tech. Rev. 26 417

    [13]

    Wang L D, Drakakis E, Duan S K, He P F, Liao X F 2012 Int. J. Bifurcat. Chaos 22 1250205

    [14]

    Zhong G Q, Man K F, Chen G R 2002 Int. J. Bifurcat. Chaos 12 2907

    [15]

    Bao B C, Shi G D, Xu J P, Liu Z, Pan S H 2011 Sci. China Tech. Sci. 54 2180

    [16]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [17]

    Min G Q, Wang L D, Duan S K 2015 Acta Phys. Sin. 64 210507 (in Chinese) [闵国旗, 王丽丹, 段书凯 2015 64 210507]

    [18]

    Li H F, Wang L D, Duan S K 2014 Int. J. Bifurcat. Chaos 24 7

    [19]

    Wang L D, Duan S K 2012 Abstr. Appl. Anal. 2012 2012

    [20]

    Li C L, Yu S M, Luo X S 2012 Acta Phys. Sin. 61 110502 (in Chinese) [李春来, 禹思敏, 罗晓曙 2012 61 110502]

    [21]

    Wang G Y, Qiu S S, Li H W, Li C F, Zheng Y 2006 Chin. Phys. 15 2872

    [22]

    Wang Z L 2008 Comput. Eng. Appl. 44 84 (in Chinese) [王忠林 2008 计算机工程与应用 44 84]

    [23]

    Shao S Y, Min F H, Wu X H, Zhang X G 2014 Acta Phys. Sin. 63 060501 (in Chinese) [邵书义, 闵富红, 吴薛红, 张新国 2014 63 060501]

    [24]

    Yu S M 2011 Chaotic Systems and Chaotic Circuits (Xi'an: Xi'an Electronic Sience and Technology University Press) pp126-148 (in Chinese) [禹思敏 2011 混沌系统与混沌电路 (西安: 西安电子科技大学出版社) 第126-148页]

    [25]

    Vaněčk A, Člikovsk S 1996 Control Systems: From Linear Analysis to Synthesis of Chaos (London: Prentice Hall International Ltd.) pp10-121

  • [1] 王璇, 杜健嵘, 李志军, 马铭磷, 李春来. 串扰忆阻突触异质离散神经网络的共存放电与同步行为.  , 2024, 73(11): 110503. doi: 10.7498/aps.73.20231972
    [2] 吴朝俊, 方礼熠, 杨宁宁. 含有偏置电压源的非齐次分数阶忆阻混沌电路动力学分析与实验研究.  , 2024, 73(1): 010501. doi: 10.7498/aps.73.20231211
    [3] 张宇琦, 王俊杰, 吕子玉, 韩素婷. 应用于感存算一体化系统的多模调控忆阻器.  , 2022, 71(14): 148502. doi: 10.7498/aps.71.20220226
    [4] 王世场, 卢振洲, 梁燕, 王光义. N型局部有源忆阻器的神经形态行为.  , 2022, 71(5): 050502. doi: 10.7498/aps.71.20212017
    [5] 任宽, 张握瑜, 王菲, 郭泽钰, 尚大山. 基于忆阻器阵列的下一代储池计算.  , 2022, 71(14): 140701. doi: 10.7498/aps.71.20220082
    [6] 吕晏旻, 闵富红. 基于现场可编程逻辑门阵列的磁控忆阻电路对称动力学行为分析.  , 2019, 68(13): 130502. doi: 10.7498/aps.68.20190453
    [7] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用.  , 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [8] 肖利全, 段书凯, 王丽丹. 基于Julia分形的多涡卷忆阻混沌系统.  , 2018, 67(9): 090502. doi: 10.7498/aps.67.20172761
    [9] 闫登卫, 王丽丹, 段书凯. 基于忆阻器的多涡卷混沌系统及其脉冲同步控制.  , 2018, 67(11): 110502. doi: 10.7498/aps.67.20180025
    [10] 林毅, 刘文波, 沈骞. 五阶压控忆阻蔡氏混沌电路的双稳定性.  , 2018, 67(23): 230502. doi: 10.7498/aps.67.20181283
    [11] 王伟, 曾以成, 孙睿婷. 含三个忆阻器的六阶混沌电路研究.  , 2017, 66(4): 040502. doi: 10.7498/aps.66.040502
    [12] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器.  , 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [13] 阮静雅, 孙克辉, 牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现.  , 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
    [14] 洪庆辉, 李志军, 曾金芳, 曾以成. 基于电流反馈运算放大器的忆阻混沌电路设计与仿真.  , 2014, 63(18): 180502. doi: 10.7498/aps.63.180502
    [15] 杨芳艳, 冷家丽, 李清都. 基于Chua电路的四维超混沌忆阻电路.  , 2014, 63(8): 080502. doi: 10.7498/aps.63.080502
    [16] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路.  , 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [17] 邵书义, 闵富红, 吴薛红, 张新国. 基于现场可编程逻辑门阵列的新型混沌系统实现.  , 2014, 63(6): 060501. doi: 10.7498/aps.63.060501
    [18] 许碧荣. 一种最简的并行忆阻器混沌系统.  , 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [19] 包伯成, 胡文, 许建平, 刘中, 邹凌. 忆阻混沌电路的分析与实现.  , 2011, 60(12): 120502. doi: 10.7498/aps.60.120502
    [20] 包伯成, 刘中, 许建平. 忆阻混沌振荡器的动力学分析.  , 2010, 59(6): 3785-3793. doi: 10.7498/aps.59.3785
计量
  • 文章访问数:  8567
  • PDF下载量:  531
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-17
  • 修回日期:  2016-04-01
  • 刊出日期:  2016-06-05

/

返回文章
返回
Baidu
map