搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毫米级高分辨率的混沌激光分布式光纤测温技术

张倩 王亚辉 张明江 张建忠 乔丽君 王涛 赵乐

引用本文:
Citation:

毫米级高分辨率的混沌激光分布式光纤测温技术

张倩, 王亚辉, 张明江, 张建忠, 乔丽君, 王涛, 赵乐

Distributed temperature measurement with millimeter-level high spatial resolution based on chaotic laser

Zhang Qian, Wang Ya-Hui, Zhang Ming-Jiang, Zhang Jian-Zhong, Qiao Li-Jun, Wang Tao, Zhao Le
PDF
HTML
导出引用
  • 近年来, 随着分布式光纤传感技术在各大基础设施健康监测领域的广泛应用, 人们对能够实现毫米量级精准定位和监测技术的需求日益增长. 本文提出了一种基于宽线宽混沌激光的高分辨率分布式光纤测温技术. 实验通过改变光反馈混沌源的偏振匹配态和反馈强度等外部参数, 产生了–3 dB线宽约为7.5 GHz的宽线宽混沌激光, 并在300 m传感光纤实现了空间分辨率为7.05 mm的分布式温度测量. 同时, 为了抑制光源线宽增加造成的布里渊增益谱恶化, 在泵浦路中引入了时间门控技术, 其中经脉冲调制后的泵浦光峰值功率提高了约9.5 dB, 同时脉冲调制使混沌互相关锁定于脉冲持续时间内, 从而布里渊增益谱的信号背景噪声比由约2.28 dB提升为4.55 dB, 最终实现了空间分辨率为3.12 mm的分布式温度测量.
    The high-precision structural health monitoring of large civil structures and materials are increasingly demanded with widely using the distributed fiber sensors. A Brillouin optical correlation domain analysis for millimeter-levelhigh spatial resolution sensing using broadband chaotic laser is proposed and demonstrated. Through the analysis of the influence of polarization state and feedback strength on the chaotic laser, we experimentally achieve a broadband chaotic laser with a spectrum over 7.5 GHz in –3 dB which means that the theoretical spatial resolution is 3 mm, and we also successfully measure the distribution of fiber Brillouin gain spectrum with a temperature over 300 m measurement range with 7.05 mm spatial resolution, which is the first time that the sensor system based on chaotic laser has achieved the measurement with millimeter-level. However, there is still a difference in spatial resolution between the experimental and theoretical values. We can find that the chaotic laser has a time-delay feature; besides, with the broadening of chaotic laser, the threshold of stimulated Brillouin scattering in optical fibers increases while the Brillouin gain will weaken if the pump power is not enough here, and the cross-correlation peak of chaotic laser will narrow. All these problems cause the Brillouin gain signal to be easily submerged by noise, so the performance of the chaotic Brillouin optical correlation domain analysis system will decrease ultimately. Therefore, we also propose an optimization of Brillouin optical correlation domain analysis system by introducing the time-gated scheme into pump branch. It is obvious that the peak power of the pump wave is heightened by more than 9.5 dB after being amplitude-modulated by a square pulse with a pulse width of greater than acoustic phonon lifetime, and the signal-to-back ground noise ratio of the gain spectrum is improved effectively in theory; the cross correlation between chaotic pump wave and probe waveis locked within a pulse duration time, and the residual stimulated Brillouin scattering interactions existing outside the central correlation peak can be largely inhibited. In this optimized setup, the performance of the distributed temperature sensing is improved to 3.12 mm spatial resolution, which corresponds well to the theoretical value. The improved chaotic Brillouin optical correlation domain analysis technology will have a great potential application in high-precision structural health monitoring of large civil structures.
      通信作者: 张明江, zhangmingjiang@tyut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61527819, 61875146)和山西省回国留学人员科研资助(批准号: 2016–036, 2017–052)资助的课题.
      Corresponding author: Zhang Ming-Jiang, zhangmingjiang@tyut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 61527819, 61875146) and the Shanxi Scholarship Council of China (Grant Nos. 2016–036, 2017–052).
    [1]

    António B, Joan C, Sergi V 2016 Sensors 16 748Google Scholar

    [2]

    Bao X Y, Chen L 2011 Sensors 11 4152Google Scholar

    [3]

    Thévenaz L 2010 Front. Optoelectron. China 3 13Google Scholar

    [4]

    Kurashima T, Horiguchi T, Tateda M 1990 Opt. Lett. 15 1038Google Scholar

    [5]

    Hu J H, Zhang X P, Yao Y G, Zhao X D 2013 Opt. Express 21 145Google Scholar

    [6]

    Kim Y H, Song K Y 2017 Opt. Express 25 14098Google Scholar

    [7]

    Soto M A, Bolognini G, Pasquale F D 2011 Opt. Lett. 36 232Google Scholar

    [8]

    Li W H, Bao X Y, Li Y, Chen L 2008 Opt. Express 16 21616Google Scholar

    [9]

    Brown A W 2007 J. Lightw. Technol. 25 381Google Scholar

    [10]

    Hotate K, Arai H, Song K Y 2008 Sice J. Control Measur. Syst. Integrat. 1 271Google Scholar

    [11]

    Hotate K, Hasegawa T 2000 IEICE Trans. Electron. 83 405

    [12]

    Ryu G, Kim G T, Song K Y, Lee S B, Lee K 2017 J. Lightw. Technol. 35 5311Google Scholar

    [13]

    Zadok A, Antman Y, Primerov N, Denisov A, Sancho J, Thévenaz L 2012 Laser Photon. Rev. 6 L1Google Scholar

    [14]

    Cohen R, London Y, Antman Y, Zadok A 2014 Opt. Express 22 12070Google Scholar

    [15]

    Ji Y N, Zhang M J, Wang Y C, Wang P, Wang A B, Wu Y, Xu H, Zhang Y N 2014 Int. J. Bifurcat. Chaos 24 1450032Google Scholar

    [16]

    Zhang J Z, Zhang M T, Zhang M J, Liu Y, Feng C K, Wang Y H, Wang Y C 2018 Opt. Lett. 43 1722Google Scholar

    [17]

    Zhang J Z, Feng C K, Zhang M J, Liu Y, Wu C Y, Wang Y H 2018 Opt. Express 26 6962Google Scholar

    [18]

    Zhang J Z, Wang Y H, Zhang M J, Zhang Q, Li M W, Wu C Y, Qiao L J, Wang Y C 2018 Opt. Express 26 17597Google Scholar

    [19]

    Jeong J H, Lee K, Song K Y, Jeong J M, Lee S B 2012 Opt. Express 20 27094Google Scholar

    [20]

    王安帮 2014 博士学位论文 (太原: 太原理工大学)

    Wang A B 2014 Ph. D. Dissertation (Taiyuan: Taiyuan University of Technology) (in Chinese)

    [21]

    Zhang J Z, Wang A B, Wang J F, Wang Y C 2009 Opt. Express 17 6357Google Scholar

    [22]

    Zhang M J, Liu H, Zhang J Z, Liu Y, Liu R X 2017 IEEE Photon. J. 9 1943

    [23]

    Parker T, Farhadiroushan M, Handerek V A 1997 Proceedings of IEE Colloquium on Optical Techniques for Smart Structures and Structural Monitoring London, UK, February 17, 1997 p1

  • 图 1  两种典型偏振匹配态下混沌激光的特性 (a1), (b1) 光谱; (a2), (b2) 频谱; (a3), (b3)自相关曲线

    Fig. 1.  The characteristics of the chaotic light at two typical polarization matching states: (a1), (b1) Optical spectra; (a2), (b2) power spectra; (a3), (b3) autocorrelation curve

    图 2  基于宽线宽混沌激光BOCDA系统的实验装置图

    Fig. 2.  The experimental setup of broadband chaotic BOCDA

    图 3  不同温度下待测光纤末端的布里渊增益谱

    Fig. 3.  The BGS at different temperature end of FUT

    图 4  待测光纤沿线布里渊频移分布图 (a)整条光纤沿线的布里渊频移分布; (b)加热位置附近的局部放大图

    Fig. 4.  The map of BFS distribution along the FUT: (a) Measured along the entire FUT; (b) the local enlargement near heated zone

    图 5  待测光纤沿线布里渊频移分布曲线

    Fig. 5.  Measured distribution of the Brillouin frequency shift along the FUT

    图 6  时间门控技术装置图

    Fig. 6.  The setup of time-gated

    图 7  脉冲调制前后泵浦光时序图

    Fig. 7.  The time series of the chaotic pump waves (red) and pulse amplitude-modulated (blue)

    图 8  引入时间门控技术前(a)后(b)两路光在待测光纤中发生受激布里渊散射示意图

    Fig. 8.  The schematic diagram of SBS in the previous system (a) and the time-gated system (b)

    图 9  混沌布里渊增益谱和温度的关系 (a)待测光纤中随温度变化的布里渊增益谱; (b)加入时间门控技术前后待测光纤中随温度变化的布里渊频移量

    Fig. 9.  The relationship of the Chaotic BGS with temperature: (a) Temperature-dependence of the BGS in the FUT; (b) that of the BFS in the chaotic BOCDA systems with (blue) and without (red) the time-gated scheme

    图 10  待测光纤沿线布里渊频移分布图 (a)整条光纤沿线的布里渊频移分布; (b)加热位置附近的局部放大图

    Fig. 10.  The map of BFS distribution along the FUT: (a) Measured along the entire FUT:(b) the local enlargement near heated zone

    图 11  优化后系统中待测光纤沿线布里渊频移分布曲线

    Fig. 11.  Measured distribution of the Brillouin frequency shift along the FUT in the setup after optimization

    Baidu
  • [1]

    António B, Joan C, Sergi V 2016 Sensors 16 748Google Scholar

    [2]

    Bao X Y, Chen L 2011 Sensors 11 4152Google Scholar

    [3]

    Thévenaz L 2010 Front. Optoelectron. China 3 13Google Scholar

    [4]

    Kurashima T, Horiguchi T, Tateda M 1990 Opt. Lett. 15 1038Google Scholar

    [5]

    Hu J H, Zhang X P, Yao Y G, Zhao X D 2013 Opt. Express 21 145Google Scholar

    [6]

    Kim Y H, Song K Y 2017 Opt. Express 25 14098Google Scholar

    [7]

    Soto M A, Bolognini G, Pasquale F D 2011 Opt. Lett. 36 232Google Scholar

    [8]

    Li W H, Bao X Y, Li Y, Chen L 2008 Opt. Express 16 21616Google Scholar

    [9]

    Brown A W 2007 J. Lightw. Technol. 25 381Google Scholar

    [10]

    Hotate K, Arai H, Song K Y 2008 Sice J. Control Measur. Syst. Integrat. 1 271Google Scholar

    [11]

    Hotate K, Hasegawa T 2000 IEICE Trans. Electron. 83 405

    [12]

    Ryu G, Kim G T, Song K Y, Lee S B, Lee K 2017 J. Lightw. Technol. 35 5311Google Scholar

    [13]

    Zadok A, Antman Y, Primerov N, Denisov A, Sancho J, Thévenaz L 2012 Laser Photon. Rev. 6 L1Google Scholar

    [14]

    Cohen R, London Y, Antman Y, Zadok A 2014 Opt. Express 22 12070Google Scholar

    [15]

    Ji Y N, Zhang M J, Wang Y C, Wang P, Wang A B, Wu Y, Xu H, Zhang Y N 2014 Int. J. Bifurcat. Chaos 24 1450032Google Scholar

    [16]

    Zhang J Z, Zhang M T, Zhang M J, Liu Y, Feng C K, Wang Y H, Wang Y C 2018 Opt. Lett. 43 1722Google Scholar

    [17]

    Zhang J Z, Feng C K, Zhang M J, Liu Y, Wu C Y, Wang Y H 2018 Opt. Express 26 6962Google Scholar

    [18]

    Zhang J Z, Wang Y H, Zhang M J, Zhang Q, Li M W, Wu C Y, Qiao L J, Wang Y C 2018 Opt. Express 26 17597Google Scholar

    [19]

    Jeong J H, Lee K, Song K Y, Jeong J M, Lee S B 2012 Opt. Express 20 27094Google Scholar

    [20]

    王安帮 2014 博士学位论文 (太原: 太原理工大学)

    Wang A B 2014 Ph. D. Dissertation (Taiyuan: Taiyuan University of Technology) (in Chinese)

    [21]

    Zhang J Z, Wang A B, Wang J F, Wang Y C 2009 Opt. Express 17 6357Google Scholar

    [22]

    Zhang M J, Liu H, Zhang J Z, Liu Y, Liu R X 2017 IEEE Photon. J. 9 1943

    [23]

    Parker T, Farhadiroushan M, Handerek V A 1997 Proceedings of IEE Colloquium on Optical Techniques for Smart Structures and Structural Monitoring London, UK, February 17, 1997 p1

  • [1] 王武越, 于宇, 李云飞, 王汞, 李凯, 王志永, 宋长禹, 李森森, 李宇海, 刘彤宇, 闫秀生, 王雨雷, 吕志伟. 脊型悬浮波导布里渊激光器.  , 2022, 71(2): 024203. doi: 10.7498/aps.71.20211539
    [2] 杨鑫宇, 彭志敏, 丁艳军, 杜艳君. 基于宽带紫外吸收的火焰温度和OH/NH/NO浓度同步测量.  , 2022, 71(17): 173301. doi: 10.7498/aps.71.20220208
    [3] 王亚辉, 赵乐, 胡鑫鑫, 郭阳, 张建忠, 乔丽君, 王涛, 高少华, 张明江. 高精度双斜坡辅助式混沌布里渊光纤动态应变传感.  , 2021, 70(10): 100704. doi: 10.7498/aps.70.20201892
    [4] 田子阳, 赵会杰, 尉昊赟, 李岩. 基于混合飞秒/皮秒相干反斯托克斯拉曼散射的动态高温燃烧场温度测量.  , 2021, 70(21): 214203. doi: 10.7498/aps.70.20211144
    [5] 孙春艳, 王贵师, 朱公栋, 谈图, 刘锟, 高晓明. 基于高分辨率激光外差光谱反演大气CO2柱浓度及系统测量误差评估方法.  , 2020, 69(14): 144201. doi: 10.7498/aps.69.20200125
    [6] 吕浩昌, 赵云驰, 杨光, 董博闻, 祁杰, 张静言, 朱照照, 孙阳, 于广华, 姜勇, 魏红祥, 王晶, 陆俊, 王志宏, 蔡建旺, 沈保根, 杨峰, 张申金, 王守国. 基于深紫外激光-光发射电子显微技术的高分辨率磁畴成像.  , 2020, 69(9): 096801. doi: 10.7498/aps.69.20200083
    [7] 杨文斌, 周江宁, 李斌成, 邢廷文. 激光诱导氮气等离子体时间分辨光谱研究及温度和电子密度测量.  , 2017, 66(9): 095201. doi: 10.7498/aps.66.095201
    [8] 梁帅西, 秦敏, 段俊, 方武, 李昂, 徐晋, 卢雪, 唐科, 谢品华, 刘建国, 刘文清. 机载腔增强吸收光谱系统应用于大气NO2空间高时间分辨率测量.  , 2017, 66(9): 090704. doi: 10.7498/aps.66.090704
    [9] 狄慧鸽, 华杭波, 张佳琪, 张战飞, 华灯鑫, 高飞, 汪丽, 辛文辉, 赵恒. 高光谱分辨率激光雷达鉴频器的设计与分析.  , 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [10] 许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究.  , 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [11] 瞿谱波, 关小伟, 张振荣, 王晟, 李国华, 叶景峰, 胡志云. 激光诱导热光栅光谱测温技术研究.  , 2015, 64(12): 123301. doi: 10.7498/aps.64.123301
    [12] 蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏. 可调谐二极管激光吸收光谱测量真空环境下气体温度的理论与实验研究.  , 2014, 63(8): 083301. doi: 10.7498/aps.63.083301
    [13] 赵延霆, 元晋鹏, 姬中华, 李中豪, 孟腾飞, 刘涛, 肖连团, 贾锁堂. 光缔合制备超冷铯分子的温度测量.  , 2014, 63(19): 193701. doi: 10.7498/aps.63.193701
    [14] 张文喜, 相里斌, 孔新新, 李杨, 伍洲, 周志盛. 相干场成像技术分辨率研究.  , 2013, 62(16): 164203. doi: 10.7498/aps.62.164203
    [15] 杨珅, 荣强周, 孙浩, 张菁, 梁磊, 徐琴芳, 詹苏昌, 杜彦英, 冯定一, 乔学光, 忽满利. 基于Michelson干涉仪的高灵敏度光纤高温探针传感器.  , 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [16] 许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰. 基于可调谐半导体激光器吸收光谱的温度测量方法研究.  , 2012, 61(23): 234204. doi: 10.7498/aps.61.234204
    [17] 赵丽娟. 环境温度宽范围变化对光纤布里渊频移的影响.  , 2010, 59(9): 6219-6223. doi: 10.7498/aps.59.6219
    [18] 哈斯乌力吉, 刘述杰, 吕志伟, 尹国和, 滕云鹏, 何伟明, 赵晓彦. 一种利用混合介质测量SBS介质布里渊线宽的方法.  , 2008, 57(3): 1709-1713. doi: 10.7498/aps.57.1709
    [19] 童 凯, 崔卫卫, 汪梅婷, 李志全. 一维缺陷光子晶体温度的测量.  , 2008, 57(2): 762-766. doi: 10.7498/aps.57.762
    [20] 吕少哲, 陈宝玖, 黄世华, 王笑军, 陆丽珠, 严懋勋. SrAl12O19∶Pr3+中的热激发.  , 2003, 52(4): 1009-1012. doi: 10.7498/aps.52.1009
计量
  • 文章访问数:  8834
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-04
  • 修回日期:  2019-02-18
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回
Baidu
map