Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Luminescence spectra and energy transfer of Tm3+ and Tb3+ doped in LiMgPO4 phosphors

Xu Zhuo Guo Jing-Yuan Xiong Zheng-Ye Tang Qiang Gao Mu

Citation:

Luminescence spectra and energy transfer of Tm3+ and Tb3+ doped in LiMgPO4 phosphors

Xu Zhuo, Guo Jing-Yuan, Xiong Zheng-Ye, Tang Qiang, Gao Mu
PDF
HTML
Get Citation
  • LiMgPO4 (LMP) phosphor doped with rare earth is a promising radiation dosimeter material. Thermoluminescence (TL) spectroscopy is an effective method to study the carrier traps and luminescence centers in materials. To study the luminescent mechanism of rare-earth-doped LMP phosphors, LMP phosphors doped with Tm and Tb (LMP:Tm, LMP:Tb and LMP:Tm, Tb) are prepared by high temperature solid state reaction. The TL glow curve and TL spectrum of the phosphors are measured by the linear heating method, and compared with the photoluminescence (PL) spectrum. The shape of the TL glow curve of LMP phosphor varies with the doping active impurities, but the TL glow curves can be fitted by seven TL peaks. Double-doping Tm3+ and Tb3+ in LMP phosphor can enhance the TL intensity of the fifth peak (E ~ 1.39 eV) and weaken the seventh TL peak (E ~ 1.70 eV). By comparing the PL spectra with TL spectra of the phosphors, it can be seen that the TL spectra are more complex than the PL spectra excited by ultraviolet light (λ = 352 nm). In the TL process, the electrons which are excited to the conduction band release the energy to recombination centers, and the released energy can more effectively excite the rare earth ions from the ground state to excited states, resulting in the more TL emitting peaks than in the the PL process. Although Tm3+ and Tb3+ can be the luminescent centers in LMP phosphors when Tm3+ and Tb3+ are doped in LMP simultaneously, Tb3+ ions are likely to act as sensitizers in LMP:Tm and LMP:Tb phosphor, and Tb3+ ions transfer energy to the low-energy Tm3+ ions, which makes the luminescent centers, Tm3+ ions, excited to the high-energy state and then de-excited with emitting light. This result is also proved by the fact that the luminescence decay of Tb3+ in phosphors increases with Tm3+ concentration increasing. The energy transfer through non-radiative transition is more significant at higher temperature.
      Corresponding author: Xiong Zheng-Ye, xiongzhengye@139.com
    • Funds: Project supported by Science and Technology Planning Project of Guangdong Province, China (Grant No. 2015A020216020), the National Natural Science Foundation of China (Grant No. 11375278) and Guangdong Ocean University, China(Grant No. CXXL2019260)
    [1]

    Daniels F, Boyd C A, Saunders D F 1953 Science 117 343Google Scholar

    [2]

    Xiong Z Y, Xu J Y, Zhao F L, Zhang Y, Liu J, Tang Q 2017 J. Lumin. 192 85Google Scholar

    [3]

    ZhangS, HuangY, Shi L, Seo H J 2010 J. Phys. Condens. Matter 22 235402Google Scholar

    [4]

    Gai M Q, Chen C Y, Fan Y W, Wang J H 2013 J. Rare Earths 31 551Google Scholar

    [5]

    Dhabekar B, Menon S N, Raja E A, Bakshi A K, Singh A K, Chougaonkar M P, Mayya Y S 2011 Nucl. Instrum. Meth. Phys. A 269 1844Google Scholar

    [6]

    Singh A K, Menon S N, Dhabekar B, Kadam S, Chougaonkar M P, Mayya Y S 2012 Nucl. Instrum. Meth. Phys. A 274 177Google Scholar

    [7]

    Bajaj N S, Palan C B, Koparkar K A, Kulkarni M S, Omanwar S K 2016 J. Lumin. 175 915

    [8]

    郭竞渊, 唐强, 唐桦明, 张纯祥, 罗达铃, 刘小伟 2017 66 107802Google Scholar

    GuoJ Y, Tang Q, Tang H M, Zhang C X, Luo D L, Liu X W 2017 Acta Phys. Sin. 66 107802Google Scholar

    [9]

    Baran A, Mahlik S, Grinberg M, Cai P, Kim S I, Seo H J 2014 J. Phys. Condens. Matter 26 85401Google Scholar

    [10]

    Kumar M, Dhabekar B, Menon S N, Bakshi A K 2013 Radiat. Prot. Dosim. 155 410Google Scholar

    [11]

    Kumar M, Dhabekar B, Menon S N, Chougaonkar M P, Mayya Y S 2011 Nucl. Instrum. Methods Phys. Res. B 269 1849Google Scholar

    [12]

    Gieszczyk W, Bilski P, Osowski M K, Nowak T, Malinowski L 2018 Radiat. Meas. 113 1419

    [13]

    Keskin I C, Türemis M, Kat M I, Gültekin S, Arslanlar Y T, Cetin A, Kibar R 2020 J. Lumin. 225 117276Google Scholar

    [14]

    Tang H M, Lin L T, Zhang C X, Tang Q 2019 Inorg. Chem. 58 9698Google Scholar

    [15]

    郭竞渊, 唐强, 兰婷婷, 张纯祥, 罗达玲 2015 中国稀土学报 33 404

    Guo J Y, Tang Q, Lan T T, Zhang C X, Luo D L 2015 J. Chin. Rare Earths Soc. 33 404

    [16]

    Gieszczyk W, Marczewska B, Kosowski M, Mrozik A, Stoch P 2019 Materials 12 2861Google Scholar

    [17]

    Hanic F, Handlovic M, Burdova K, Majling J 1982 J. Cryst. Spectrosc. 12 99Google Scholar

    [18]

    詹明亮, 陈瑶窈, 续卓, 熊正烨 2020 核技术 43 050501Google Scholar

    Zhan M L, Chen Y Y, Xu Z, Xiong Z Y 2020 Nucl. Tech. 43 050501Google Scholar

    [19]

    McKeever S W S 1988 Thermoluminescence of Solids (London: Cambridge University Press) p75

    [20]

    Liu X, Teng Y, Zhuang Y, Xie J, Qiao Y, Dong G, Chen D, Qiu J 2009 Opt. Lett. 22 3565

  • 图 1  LMP磷光体的XRD与标准卡片对比图

    Figure 1.  XRD of LMP phosphors doped with rare earth.

    图 2  LMP:Tb0.5at%磷光体的热释光发光曲线及其拟合

    Figure 2.  TL glow curve and the fitting of LMP:Tb0.5at% phosphor.

    图 3  LMP:Tm0.5at%磷光体的热释光发光曲线及其拟合

    Figure 3.  TL glow curve and the fitting of LMP:Tm0.5at% phosphor.

    图 4  LMP:Tb0.5at%, Tm0.5at%磷光体的热释光发光曲线及其拟合 (a) 线性纵坐标; (b)对数纵坐标

    Figure 4.  TL glow curve and the fitting of LMP:Tb0.5at%, Tm0.5at% phosphor: (a) The ordinate is in linear scale; (b) the ordinate is in logarithmic scale.

    图 5  LMP:Tb0.5at%, Tmxat%磷光体在352 nm的近紫外光激发时的发光谱

    Figure 5.  Luminescence spectra of phosphors LMP:Tb0.5at%, Tm x at% excited by ultraviolet light (λ = 352 nm).

    图 6  LMP:Tb0.5at%, Tm x at%磷光体荧光(λEm = 450 nm)衰减曲线

    Figure 6.  Luminescence Decay Curves (λEm = 450 nm) of phosphors LMP:Tb0.5at%, Tm x at%.

    图 7  (a) LMP:Tb0.5at%磷光体的热释光谱 (b) LMP:Tm0.5at%磷光体的热释光谱 (c) LMP:Tb0.5at%, Tm0.5at%磷光体的热释光谱

    Figure 7.  (a). TL contour spectra of phosphors LMP:Tb0.5at%. (b). TL contour spectra of phosphors LMP:Tm0.5at%. (c). TL contour spectra of phosphors LMP:Tb0.5at%, Tm0.5at%.

    图 8  (a) LMP:Tb0.5at%磷光体不同温区的热释光谱 (b) LMP:Tm0.5at%磷光体不同温区的热释光谱 (c) LMP:Tm0.5at%, Tb0.5at%磷光体不同温区的热释光谱

    Figure 8.  (a). TL spectra of phosphors LMP:Tb0.5at% in different temperature ranges. (b). TL spectra of phosphors LMP:Tm0.5at% in different temperature ranges. (c). TL spectra of phosphors LMP:Tm0.5at%, Tb0.5at% in different temperature ranges.

    图 9  Tm离子和Tb离子的能级跃迁示意图

    Figure 9.  Diagrammatic sketch of energy transition of Tm and Tb ions.

    表 1  LMP:Tb0.5at%磷光体的热释光陷阱参数

    Table 1.  TL trap’s parameters of LMP:Tb0.5at% phosphor.

    峰序号E/eVs/Hzn0b
    峰10.874.18 × 10111.68 × 1051.5
    峰20.992.28 × 10121.11 × 1051.3
    峰31.024.39 × 10112.76 × 1052.0
    峰41.174.88 × 10102.84 × 1052.0
    峰51.391.23 × 10111.64 × 1052.0
    峰61.641.32 × 10121.32 × 1052.0
    峰71.703.67 × 10114.84 × 1051.6
    DownLoad: CSV

    表 2  LMP:Tm0.5at%磷光体的热释光陷阱参数

    Table 2.  TL trap’s parameters of LMP:Tm0.5at% phosphor.

    峰序号E/eVs/Hzn0b
    峰10.897.92 × 10118.83 × 1041.2
    峰21.013.31 × 10122.34 × 1052.0
    峰31.088.00 × 10101.04 × 1051.5
    峰41.204.27 × 10101.85 × 1051.2
    峰51.388.32 × 10102.83 × 1051.3
    峰61.631.17 × 10124.50 × 1041.3
    峰71.694.26 × 10113.67 × 1041.0
    DownLoad: CSV

    表 3  LMP:Tb0.5at, Tm0.5at%磷光体的热释光陷阱参数

    Table 3.  TL trap’s parameters of LMP:Tb0.5at%, Tm0.5at% phosphor.

    峰序号E/eVs/Hzn0b
    峰10.859.30 × 10111.48 × 1051.9
    峰20.951.89 × 10129.83 × 1042.0
    峰31.092.74 × 10124.02 × 1042.0
    峰41.164.99 × 10112.48 × 1051.4
    峰51.406.26 × 10113.80 × 1061.2
    峰61.588.31 × 10122.13 × 1051.5
    峰71.702.18 × 10123.09 × 1031.1
    DownLoad: CSV

    表 4  LMP:Tb0.5at%, Tm0.5at%磷光体中Tb3+向Tm3+的能量转移效率

    Table 4.  The efficiency of energy transfer from Tb3+ to Tm3+ in LMP:Tb0.5at%, Tm0.5at% phosphor.

    xτ/μsστ/μsηETσηET
    066.51.1
    0.0533.30.349.9%1.0%
    0.1026.60.260.0%1.1%
    0.2020.30.269.5%1.4%
    1.0013.40.379.8%2.3%
    DownLoad: CSV
    Baidu
  • [1]

    Daniels F, Boyd C A, Saunders D F 1953 Science 117 343Google Scholar

    [2]

    Xiong Z Y, Xu J Y, Zhao F L, Zhang Y, Liu J, Tang Q 2017 J. Lumin. 192 85Google Scholar

    [3]

    ZhangS, HuangY, Shi L, Seo H J 2010 J. Phys. Condens. Matter 22 235402Google Scholar

    [4]

    Gai M Q, Chen C Y, Fan Y W, Wang J H 2013 J. Rare Earths 31 551Google Scholar

    [5]

    Dhabekar B, Menon S N, Raja E A, Bakshi A K, Singh A K, Chougaonkar M P, Mayya Y S 2011 Nucl. Instrum. Meth. Phys. A 269 1844Google Scholar

    [6]

    Singh A K, Menon S N, Dhabekar B, Kadam S, Chougaonkar M P, Mayya Y S 2012 Nucl. Instrum. Meth. Phys. A 274 177Google Scholar

    [7]

    Bajaj N S, Palan C B, Koparkar K A, Kulkarni M S, Omanwar S K 2016 J. Lumin. 175 915

    [8]

    郭竞渊, 唐强, 唐桦明, 张纯祥, 罗达铃, 刘小伟 2017 66 107802Google Scholar

    GuoJ Y, Tang Q, Tang H M, Zhang C X, Luo D L, Liu X W 2017 Acta Phys. Sin. 66 107802Google Scholar

    [9]

    Baran A, Mahlik S, Grinberg M, Cai P, Kim S I, Seo H J 2014 J. Phys. Condens. Matter 26 85401Google Scholar

    [10]

    Kumar M, Dhabekar B, Menon S N, Bakshi A K 2013 Radiat. Prot. Dosim. 155 410Google Scholar

    [11]

    Kumar M, Dhabekar B, Menon S N, Chougaonkar M P, Mayya Y S 2011 Nucl. Instrum. Methods Phys. Res. B 269 1849Google Scholar

    [12]

    Gieszczyk W, Bilski P, Osowski M K, Nowak T, Malinowski L 2018 Radiat. Meas. 113 1419

    [13]

    Keskin I C, Türemis M, Kat M I, Gültekin S, Arslanlar Y T, Cetin A, Kibar R 2020 J. Lumin. 225 117276Google Scholar

    [14]

    Tang H M, Lin L T, Zhang C X, Tang Q 2019 Inorg. Chem. 58 9698Google Scholar

    [15]

    郭竞渊, 唐强, 兰婷婷, 张纯祥, 罗达玲 2015 中国稀土学报 33 404

    Guo J Y, Tang Q, Lan T T, Zhang C X, Luo D L 2015 J. Chin. Rare Earths Soc. 33 404

    [16]

    Gieszczyk W, Marczewska B, Kosowski M, Mrozik A, Stoch P 2019 Materials 12 2861Google Scholar

    [17]

    Hanic F, Handlovic M, Burdova K, Majling J 1982 J. Cryst. Spectrosc. 12 99Google Scholar

    [18]

    詹明亮, 陈瑶窈, 续卓, 熊正烨 2020 核技术 43 050501Google Scholar

    Zhan M L, Chen Y Y, Xu Z, Xiong Z Y 2020 Nucl. Tech. 43 050501Google Scholar

    [19]

    McKeever S W S 1988 Thermoluminescence of Solids (London: Cambridge University Press) p75

    [20]

    Liu X, Teng Y, Zhuang Y, Xie J, Qiao Y, Dong G, Chen D, Qiu J 2009 Opt. Lett. 22 3565

  • [1] Qin Ya-Qiang, Chen Rui-Yun, Shi Ying, Zhou Hai-Tao, Zhang Guo-Feng, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. The role of chain conformation in energy transfer properties of single conjugated polymer molecule. Acta Physica Sinica, 2017, 66(24): 248201. doi: 10.7498/aps.66.248201
    [2] Wu Li, Wang Qian, Li Guo-Dong, Dou Qiao-Ya, Ji Xu. Thermoluminescence and optically stimulated luminescence characteristics of Al2O3:C films annealed at different tempeartures. Acta Physica Sinica, 2016, 65(3): 037802. doi: 10.7498/aps.65.037802
    [3] Cheng Shuai, Xu Xu-Hui, Wang Peng-Jiu, Qiu Jian-Bei. Long persistent and photo-stimulated luminescence properties of β-Sr2SiO4:Eu2+, La3+ phosphors. Acta Physica Sinica, 2015, 64(1): 017802. doi: 10.7498/aps.64.017802
    [4] Li Mu-Ye, Li Fang, Wei Lai, He Zhi-Cong, Zhang Jun-Pei, Han Jun-Bo, Lu Pei-Xiang. Fluorescence resonance energy transfer in a aqueous system of CdTe quantum dots and Rhodamine B with two-photon excitation. Acta Physica Sinica, 2015, 64(10): 108201. doi: 10.7498/aps.64.108201
    [5] Luo Da-Ling, Tang Qiang, Guo Jing-Yuan, Zhang Chun-Xiang. Isoelectronic traps and thermoluminescence characteristics in MSO4:Eu2+ (M =Mg, Ca, Sr, Ba). Acta Physica Sinica, 2015, 64(8): 087805. doi: 10.7498/aps.64.087805
    [6] Mo Ya-Xiao, Piao Sheng-Chun, Zhang Hai-Gang, Li Li. Mode coupling and energy transfer in a range-dependent waveguide. Acta Physica Sinica, 2014, 63(21): 214302. doi: 10.7498/aps.63.214302
    [7] Ning Cheng, Feng Zhi-Xing, Xue Chuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch. Acta Physica Sinica, 2014, 63(12): 125208. doi: 10.7498/aps.63.125208
    [8] He Yue-Di, Xu Zheng, Zhao Su-Ling, Liu Zhi-Min, Gao Song, Xu Xu-Rong. Electroluminescent energy transfer of hybrid quantum dotsdevice. Acta Physica Sinica, 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [9] Wu Qing-Yang, Xie Guo-Hua, Zhang Zhen-Song, Yue Shou-Zhen, Wang Peng, Chen Yu, Guo Run-Da, Zhao Yi, Liu Shi-Yong. Highly efficient all fluorescent white organic light-emitting devices made by sequential doping. Acta Physica Sinica, 2013, 62(19): 197204. doi: 10.7498/aps.62.197204
    [10] Yuan Qiang, Wei Xiao-Feng, Zhang Xiao-Min, Zhang Xin, Zhao Jun-Pu, Huang Wen-Hui, Hu Dong-Xia. Study on stimulated Brillouin scatting energy transfer to amplify laser pulses for shock ignition in laser fusion facilities. Acta Physica Sinica, 2012, 61(11): 114207. doi: 10.7498/aps.61.114207
    [11] Shen Han, Liu Jie, Chen Zhi-Feng, Huang Jin-Wang, Shen Yong, Wang Hui, Ji Liang-Nian. Ultrafast energy transfer of a porphyrin-polypyridyl ruthenium (Ⅱ) hybrid linked by a butyl chain. Acta Physica Sinica, 2008, 57(11): 7354-7359. doi: 10.7498/aps.57.7354
    [12] Xu Deng, Ye Li-Hua, Cui Yi-Ping, Xi Jun, Li Li, Wang Qiong. Study of photoluminescence and energy transfer properties of an organic dye salt doped thin films. Acta Physica Sinica, 2008, 57(5): 3267-3270. doi: 10.7498/aps.57.3267
    [13] Yang Xin-Bo, Li Hong-Jun, Xu Jun, Cheng Yan, Su Liang-Bi, Tang Qiang. Thermoluminescence and optically stimulated luminescence characteristics of α-Al2O3:C crystal. Acta Physica Sinica, 2008, 57(12): 7900-7905. doi: 10.7498/aps.57.7900
    [14] Wu Chun-Hong, Liu Peng-Yi, Hou Lin-Tao, Li Yan-Wu. The energy transfer in phosphorescent dye PtOEP doped organic molecule Alq. Acta Physica Sinica, 2008, 57(11): 7317-7321. doi: 10.7498/aps.57.7317
    [15] Song Shu-Fang, Zhao De-Wei, Xu Zheng, Xu Xu-Rong. Energy transfer in organic quantum well structures. Acta Physica Sinica, 2007, 56(6): 3499-3503. doi: 10.7498/aps.56.3499
    [16] Zhang Peng, Zhou Yin-Hua, Liu Xiu-Fen, Tian Wen-Jing, Li Min, Zhang Guo. Study on the energy transfer and luminescent properties in PVK:DBVP blend system. Acta Physica Sinica, 2006, 55(10): 5494-5498. doi: 10.7498/aps.55.5494
    [17] Tang Qiang, Zhang Chun-Xiang, Leung P. L., Mike Li, Luo Da-Ling. Optically stimulated luminescence in SrSO4: Eu phosphors. Acta Physica Sinica, 2005, 54(1): 64-69. doi: 10.7498/aps.54.64
    [18] Zhang Chun-Xiang, Tang Qiang, Luo Da-Ling. . Acta Physica Sinica, 2002, 51(12): 2881-2886. doi: 10.7498/aps.51.2881
    [19] LIU BO, SHI CHAO-SHU, ZHOU DONG-FANG, QI ZE-MING, HU GUAN-QIN, TANG HONG-GAO. INFLUENCE OF Gd3+ AND Y3+-DOPING ON LOW TEMPERATURE THERMOLUMINESCENCE OF Pb WO_4. Acta Physica Sinica, 2001, 50(8): 1627-1631. doi: 10.7498/aps.50.1627
    [20] LIU BO, SHI CHAO-SHU, WEI YA-GUANG, WU CAN, LI YU-XIONG, HU GUAN-QIN, SHEN DING -ZHONG. INFLUENCE OF Y3+-DOPING ON THERMOLUMINESCENCE OF PbWO4. Acta Physica Sinica, 2000, 49(10): 2078-2082. doi: 10.7498/aps.49.2078
Metrics
  • Abstract views:  5116
  • PDF Downloads:  77
  • Cited By: 0
Publishing process
  • Received Date:  24 February 2021
  • Accepted Date:  27 March 2021
  • Available Online:  07 June 2021
  • Published Online:  20 August 2021

/

返回文章
返回
Baidu
map